2,126 research outputs found
Composite passive damping struts for large precision structures
In the field of viscoelastic dampers, a new strut design comprises a viscoelastic material sandwiched between multiple layers, some of which layers bear and dampen load force. In one embodiment, the layers are composite plies of opposing orientation. In another embodiment, the strut utilizes a viscoelastic layer sandwiched between V-shaped composite plies. In a third embodiment, a viscoelastic layer is sandwiched between sine-shaped plies. Strut strength is equal to or greater than conventional aluminum struts due to the unique high interlaminar shear ply design
The effects of recombination rate on the distribution and abundance of transposable elements
Transposable elements (TEs) often accumulate in regions of the genome with suppressed recombination. But it is unclear whether this pattern reflects a reduction in the efficacy of selection against deleterious insertions or a relaxation of ectopic recombination. Discriminating between these two hypotheses has been difficult, because no formal model has investigated the effects of recombination under the deleterious insertion model. Here we take a simulation-based approach to analyze this scenario and determine the conditions under which element accumulation is expected in low recombination regions. We show that TEs become fixed as a result of Hill–Robertson effects in the form of Muller's ratchet, but only in regions of extremely low recombination when excision is effectively absent and synergism between elements is weak. These results have important implications for differentiating between the leading models of how selection acts on TEs and should help to interpret emerging population genetic and genomic data
Analysis of elastically tailored viscoelastic damping member
For more than two decades, viscoelastic materials have been commonly used as a passive damping source in a variety of structures because of their high material loss factors. In most of the applications, viscoelastic materials are used either in series with or parallel to the structural load path. The latter is also known as the constrained-layer damping treatment. The advantage of the constrained-layer damping treatment is that it can be incorporated without loss in structural integrity, namely, stiffness and strength. However, the disadvantages are that: (1) it is not the most effective use of the viscoelastic material when compared with the series-type application, and (2) weight penalty from the stiff constraining layer requirement can be excessive. To overcome the disadvantages of the constrained-layer damping treatment, a new approach for using viscoelastic material in axial-type structural components, e.g., truss members, was studied in this investigation
Israel in Adult Education
The relationship between American Jews and Israel has been impacted by the growing differences between the two communities. This research outlines the challenges of adult Jewish education today and provides recommendations on how to enhance the quality and frequency of Israel education in adult learning experiences
Explosion Welding for Hermetic Containerization
A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface. The process stages are shown. In its initial double-wall form, the volume between the walls is isolated from the environment; in other words, the outer wall (which is later sacrificed) initially serves to protect the inner container from contamination. The sample is placed inside the container through an opening at one end, then the container is placed into a transfer dock/lid. The surfaces that will be welded together under the explosive have been coated with a soft metallic sacrificial layer. During the explosion, the sacrificial layer is ejected, and the container walls are welded together, creating a strong metallic seal. The inner container is released during the same event and enters the clean environment
Metastable Resistivity States and Conductivity Fluctuations in Low-doped LaCaMnO Manganite Single Crystals
Conductivity noise in dc current biased La_{0.82}Ca_{0.18}MnO_{3} single
crystals has been investigated in different metastable resistivity states
enforced by applying voltage pulses to the sample at low temperatures. Noise
measured in all investigated resistivity states is of 1/f-type and its
intensity at high temperatures and low dc bias scales as a square of the bias.
At liquid nitrogen temperatures for under bias exceeding a threshold value, the
behavior of the noise deviates from above quasi- equilibrium modulation noise
and depends in a non monotonic way on applied bias. The bias range of
nonequilibrium 1/f noise coincides with the range at which the conductance
increases linearly with bias voltage. This feature is attributed to a broad
continuity of states enabling indirect inelastic tunneling across intrinsic
tunnel junctions. The nonequilibrium noise has been ascribed to indirect
intrinsic tunneling mechanism while resistivity changes in metastable states to
variations in the energy landscape for charge carriers introduced by
microcracks created by the pulse procedures employedComment: 10 pages, 5 figure
Bias Dependent 1/f Conductivity Fluctuations in Low-Doped LaCaMnO Manganite Single Crystals
Low frequency noise in current biased LaCaMnO single
crystals has been investigated in a wide temperature range from 79 K to 290 K.
Despite pronounced changes in magnetic properties and dissipation mechanisms of
the sample with changing temperature, the noise spectra were found to be always
of the 1/f type and their intensity (except the lowest temperature studied)
scaled as a square of the bias. At liquid nitrogen temperatures and under bias
exceeding some threshold value, the behavior of the noise deviates from the
quasi-equilibrium modulation noise and starts to depend in a non monotonic way
on bias. It has been verified that the observed noise obeys Dutta and Horn
model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and
its dependence on bias have been associated with changes in the distribution of
activation energies in the underlying energy landscape. These changes have been
correlated with bias induced changes in the intrinsic tunneling mechanism
dominating dissipation in LaCaMnO at low temperatures.Comment: Accepted for publication in the Journal of Applied Physic
Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals
1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated.
The temperature dependence of the noise follows the resistivity changes with
temperature suggesting that resistivity fluctuations constitute a fixed
fraction of the total resistivity, independently of the dissipation mechanism
and magnetic state of the system. The noise scales as a square of the current
as expected for equilibrium resistivity fluctuations. However, at 77 K at bias
exceeding some threshold, the noise intensity starts to decrease with
increasing bias. The appearance of nonequilibrium noise is interpreted in terms
of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte
- …
