2,632 research outputs found
Recommended from our members
Parallel changes in gut microbiome composition and function in parallel local adaptation and speciation
The processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet, relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we utilize three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification
Towards Explainability of UAV-Based Convolutional Neural Networks for Object Classification
f autonomous systems using trust and trustworthiness is the focus of Autonomy Teaming and TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR), a new NASA Convergent Aeronautical Solutions (CAS) Project. One critical research element of ATTRACTOR is explainability of the decision-making across relevant subsystems of an autonomous system. The ability to explain why an autonomous system makes a decision is needed to establish a basis of trustworthiness to safely complete a mission. Convolutional Neural Networks (CNNs) are popular visual object classifiers that have achieved high levels of classification performances without clear insight into the mechanisms of the internal layers and features. To explore the explainability of the internal components of CNNs, we reviewed three feature visualization methods in a layer-by-layer approach using aviation related images as inputs. Our approach to this is to analyze the key components of a classification event in order to generate component labels for features of the classified image at different layers of depths. For example, an airplane has wings, engines, and landing gear. These could possibly be identified somewhere in the hidden layers from the classification and these descriptive labels could be provided to a human or machine teammate while conducting a shared mission and to engender trust. Each descriptive feature may also be decomposed to a combination of primitives such as shapes and lines. We expect that knowing the combination of shapes and parts that create a classification will enable trust in the system and insight into creating better structures for the CNN
Takeover defenses, ownership structure and stock returns in the Netherlands: an empirical analysis
This study empirically examines the relationships between a firm’s takeover defenses and its ownership structure and stock returns. Analyzing data of Dutch listed companies, we find that multiple antitakeover defenses are increasingly adopted when firms are characterized by relatively lower ownership concentration. The evidence supports the hypothesis that more concentrated ownership of shares provides more effective monitoring of managers. As defense\ud
by issuing preferred share has recently been the most widely adopted mechanism in the Netherlands, its impact on shareholders’ wealth is also analyzed. We observe the presence of two opposing effects of this antitakeover measur
Recommended from our members
Rapid adaptive evolution of colour vision in the threespine stickleback radiation.
Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss
Recommended from our members
Genetics of adaptation: Experimental test of a biotic mechanism driving divergence in traits and genes.
The genes underlying adaptations are becoming known, yet the causes of selection on genes-a key step in the study of the genetics of adaptation-remains uncertain. We address this issue experimentally in a threespine stickleback species pair showing exaggerated divergence in bony defensive armor in association with competition-driven character displacement. We used semi-natural ponds to test the role of a native predator in causing divergent evolution of armor and two known underlying genes. Predator presence/absence altered selection on dorsal spines and allele frequencies at the Msx2a gene across a generation. Evolutionary trajectories of alleles at a second gene, Pitx1, and the pelvic spine trait it controls, were more variable. Our experiment demonstrates how manipulation of putative selective agents helps to identify causes of evolutionary divergence at key genes, rule out phenotypic plasticity as a sole determinant of phenotypic differences, and eliminate reliance on fitness surrogates. Divergence of predation regimes in sympatric stickleback is associated with coevolution in response to resource competition, implying a cascade of biotic interactions driving species divergence. We suggest that as divergence proceeds, an increasing number of biotic interactions generate divergent selection, causing more evolution in turn. In this way, biotic adaptation perpetuates species divergence through time during adaptive radiation in an expanding number of traits and genes
Correlation Between the Microstructure and Mechanical Properties of Irradiated Fe-9Cr ODS
The growing global demand for energy will increasingly call upon fusion reactors and Generation IV nuclear fission reactors to supply safe and reliable energy worldwide. Ferritic/martensitic (F/M) alloys are leading candidates for structural components in these reactors because of their high strength, dimensional stability, and low activation. In novel reactor concepts, these materials will be subject to extreme operating conditions, accumulating doses of irradiation up to a few hundred displacements per atom (dpa) at temperatures as high as 600°C. Oxide dispersion strengthened (ODS) F/M alloys containing a dispersion of Y-Ti-0 nanoclusters have been developed to operate at even higher temperatures
- …
