39 research outputs found

    MRI monitoring of cartilage repair in the knee: a review

    No full text
    Various treatment options for deep cartilage defects are presently available. The efficacy of bone marrow stimulation with microfracture, of mosaicplasty and of various autologous chondrocyte implantation (ACI) techniques has been subject to numerous studies recently. Magnetic resonance imaging (MRI) has gained a major role in the assessment of cartilage repair. The introduction of high-field MRI to clinical routine makes high resolution and three-dimensional imaging readily available. New quantitative MRI techniques that directly visualize the molecular structure of cartilage may further advance our understanding of cartilage repair. The clinical evaluation of cartilage repair tissue is a complex issue, and MR imaging will become increasingly important both in research and in clinical routine. This article reviews the clinical aspects of microfracture, mosaicplasty, and ACI and reports the recent technical advances that have improved MRI of cartilage. Morphological evaluation methods are recommended for each of the respective techniques. Finally, an overview of T2 mapping and delayed gadolinium-enhanced MR imaging of cartilage in cartilage repair is provided

    Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience

    No full text
    PURPOSE: To prospectively compare cartilage T2 values after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) repair procedures. MATERIALS AND METHODS: The study had institutional review board approval by the ethics committee of the Medical University of Vienna; informed consent was obtained. Twenty patients who underwent MFX or MACT (10 in each group) were enrolled. For comparability, patients of each group were matched by mean age (MFX, 40.0 years +/- 15.4 [standard deviation]; MACT, 41.0 years +/- 8.9) and postoperative interval (MFX, 28.6 months +/- 5.2; MACT, 27.4 months +/- 13.1). Magnetic resonance (MR) imaging was performed with a 3-T MR imager, and T2 maps were calculated from a multiecho spin-echo measurement. Global, as well as zonal, quantitative T2 values were calculated within the cartilage repair area and within cartilage sites determined to be morphologically normal articular cartilage. Additionally, with consideration of the zonal organization, global regions of interest were subdivided into deep and superficial areas. Differences between cartilage sites and groups were calculated by using a three-way analysis of variance. RESULTS: Quantitative T2 assessment of normal native hyaline cartilage showed similar results for all patients and a significant trend of increasing T2 values from deep to superficial zones (P or = .05). For zonal variation, repair tissue after MFX showed no significant trend between different depths (P > or = .05), in contrast to repair tissue after MACT, in which a significant increase from deep to superficial zones (P < .05) could be observed. CONCLUSION: Quantitative T2 mapping seems to reflect differences in repair tissues formed after two surgical cartilage repair procedures. (c) RSNA, 2008

    T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results

    No full text
    To assess repair tissue (RT) after the implantation of BioCartII, an autologous chondrocyte implantation (ACI) technique with a fibrin-hyaluronan polymer as scaffold. T2 mapping and delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) were used to gain first data on the biochemical properties of BioCartII RT in vivo

    Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation

    No full text
    To demonstrate the feasibility of delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in the ankle at 3 T and to obtain preliminary data on matrix associated autologous chondrocyte (MACI) repair tissue

    Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    No full text
    OBJECTIVE: The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. MATERIALS AND METHODS: Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. RESULTS: The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (approximately 50 ms), T2* relaxation times (approximately 16 ms), and the diffusion constant for DWI (approximately 1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p > or = 0.05) compared to the control cartilage; however, a significantly higher diffusivity (approximately 1.5; p < 0.05) was noted in the cartilage repair tissue. CONCLUSION: The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences
    corecore