18,206 research outputs found
Time evolution of the extremely diluted Blume-Emery-Griffiths neural network
The time evolution of the extremely diluted Blume-Emery-Griffiths neural
network model is studied, and a detailed equilibrium phase diagram is obtained
exhibiting pattern retrieval, fluctuation retrieval and self-sustained activity
phases. It is shown that saddle-point solutions associated with fluctuation
overlaps slow down considerably the flow of the network states towards the
retrieval fixed points. A comparison of the performance with other three-state
networks is also presented.Comment: 8 pages, 5 figure
Numerical simulation of a binary communication channel: Comparison between a replica calculation and an exact solution
The mutual information of a single-layer perceptron with Gaussian inputs
and deterministic binary outputs is studied by numerical simulations. The
relevant parameters of the problem are the ratio between the number of output
and input units, , and those describing the two-point
correlations between inputs. The main motivation of this work refers to the
comparison between the replica computation of the mutual information and an
analytical solution valid up to . The most relevant results
are: (1) the simulation supports the validity of the analytical prediction, and
(2) it also verifies a previously proposed conjecture that the replica solution
interpolates well between large and small values of .Comment: 6 pages, 8 figures, LaTeX fil
Controlling chaos in diluted networks with continuous neurons
Diluted neural networks with continuous neurons and nonmonotonic transfer
function are studied, with both fixed and dynamic synapses. A noisy stimulus
with periodic variance results in a mechanism for controlling chaos in neural
systems with fixed synapses: a proper amount of external perturbation forces
the system to behave periodically with the same period as the stimulus.Comment: 11 pages, 8 figure
Optimally adapted multi-state neural networks trained with noise
The principle of adaptation in a noisy retrieval environment is extended here
to a diluted attractor neural network of Q-state neurons trained with noisy
data. The network is adapted to an appropriate noisy training overlap and
training activity which are determined self-consistently by the optimized
retrieval attractor overlap and activity. The optimized storage capacity and
the corresponding retriever overlap are considerably enhanced by an adequate
threshold in the states. Explicit results for improved optimal performance and
new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting
phases over a wide range of thresholds. Most of the interesting results are
stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR
Test of Information Theory on the Boltzmann Equation
We examine information theory using the steady-state Boltzmann equation. In a
nonequilibrium steady-state system under steady heat conduction, the
thermodynamic quantities from information theory are calculated and compared
with those from the steady-state Boltzmann equation. We have found that
information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page
Knudsen Effect in a Nonequilibrium Gas
From the molecular dynamics simulation of a system of hard-core disks in
which an equilibrium cell is connected with a nonequilibrium cell, it is
confirmed that the pressure difference between two cells depends on the
direction of the heat flux. From the boundary layer analysis, the velocity
distribution function in the boundary layer is obtained. The agreement between
the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Photonic analogues of the relativistic Kronig-Penney model and of
relativistic surface Tamm states are proposed for light propagation in fibre
Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in
the FBG realizes the relativistic Kronig-Penney model, the band structure of
which being mapped into the spectral response of the FBG. For the semi-infinite
FBG Tamm surface states can appear and can be visualized as narrow resonance
peaks in the transmission spectrum of the grating
FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS
We report theoretical electronic structure of Fibonacci superlattices of
narrow-gap III-V semiconductors. Electron dynamics is accurately described
within the envelope-function approximation in a two-band model.
Quasiperiodicity is introduced by considering two different III-V semiconductor
layers and arranging them according to the Fibonacci series along the growth
direction. The resulting energy spectrum is then found by solving exactly the
corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix
techniques. We find that a self-similar electronic spectrum can be seen in the
band structure. Electronic transport properties of samples are also studied and
related to the degree of spatial localization of electronic envelope-functions
via Landauer resistance and Lyapunov coefficient. As a working example, we
consider type II InAs/GaSb superlattices and discuss in detail our results in
this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in
Semiconductor Science and Technolog
- …
