18,206 research outputs found

    Time evolution of the extremely diluted Blume-Emery-Griffiths neural network

    Get PDF
    The time evolution of the extremely diluted Blume-Emery-Griffiths neural network model is studied, and a detailed equilibrium phase diagram is obtained exhibiting pattern retrieval, fluctuation retrieval and self-sustained activity phases. It is shown that saddle-point solutions associated with fluctuation overlaps slow down considerably the flow of the network states towards the retrieval fixed points. A comparison of the performance with other three-state networks is also presented.Comment: 8 pages, 5 figure

    Numerical simulation of a binary communication channel: Comparison between a replica calculation and an exact solution

    Full text link
    The mutual information of a single-layer perceptron with NN Gaussian inputs and PP deterministic binary outputs is studied by numerical simulations. The relevant parameters of the problem are the ratio between the number of output and input units, α=P/N\alpha = P/N, and those describing the two-point correlations between inputs. The main motivation of this work refers to the comparison between the replica computation of the mutual information and an analytical solution valid up to αO(1)\alpha \sim O(1). The most relevant results are: (1) the simulation supports the validity of the analytical prediction, and (2) it also verifies a previously proposed conjecture that the replica solution interpolates well between large and small values of α\alpha.Comment: 6 pages, 8 figures, LaTeX fil

    Controlling chaos in diluted networks with continuous neurons

    Full text link
    Diluted neural networks with continuous neurons and nonmonotonic transfer function are studied, with both fixed and dynamic synapses. A noisy stimulus with periodic variance results in a mechanism for controlling chaos in neural systems with fixed synapses: a proper amount of external perturbation forces the system to behave periodically with the same period as the stimulus.Comment: 11 pages, 8 figure

    Optimally adapted multi-state neural networks trained with noise

    Full text link
    The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states

    Full text link
    Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog
    corecore