12,952 research outputs found
Size-sorting dust grains in the surface layers of protoplanetary disks
Aims: We wish to investigate what the effect of dust sedimentation is on the
observed 10 mum feature of protoplanetary disks and how this may affect the
interpretation of the observations.
Methods: Using a combination of modeling tools, we simulated the
sedimentation of a dust grain size distribution in an axisymmetric 2-D model of
a turbulent protoplanetary disk, and we used a radiative transfer program to
compute the resulting spectra.
Results: We find that the sedimentation can turn a flat feature into a pointy
one, but only to a limited degree and for a very limited set of particle size
distributions. Only if we have a bimodal size distribution, i.e. a very small
grain population and a bigger grain population, do we find that the
transformation from a flat to a pointy feature upon dust sedimentation is
strong. However, our model shows that, if sedimentation is the sole reason for
the variety of silicate feature strengths observed in protoplanetary disks,
then we would expect to find a correlation such that disks with weak mid- to
far-infrared excess have a stronger 10 mum silicate feature than disks with a
strong mid- to far-infrared excess. If this is contrary to what is observed,
then this would indicate that sedimentation cannot be the main reason for the
variety of 10 mum silicate features observed in protoplanetary disks.Comment: Astronomy and Astrophysics, in pres
Astrometric Resolution of Severely Degenerate Binary Microlensing Events
We investigate whether the "close/wide" class of degeneracies in
caustic-crossing binary microlensing events can be broken astrometrically.
Dominik showed that these degeneracies are particularly severe because they
arise from a degeneracy in the lens equation itself rather than a mere
"accidental" mimicking of one light curve by another. A massive observing
campaign of five microlensing collaborations was unable to break this
degeneracy photometrically in the case of the binary lensing event MACHO
98-SMC-1. We show that this degeneracy indeed causes the image centroids of the
wide and close solutions to follow an extremely similar pattern of motion
during the time when the source is in or near the caustic. Nevertheless, the
two image centroids are displaced from one another and this displacement is
detectable by observing the event at late times. Photometric degeneracies
therefore can be resolved astrometrically, even for these most severe cases.Comment: 11 pages, including 4 figures. Submitted to Ap
Growth of Dust as the Initial Step Toward Planet Formation
We discuss the results of laboratory measurements and theoretical models
concerning the aggregation of dust in protoplanetary disks, as the initial step
toward planet formation. Small particles easily stick when they collide and
form aggregates with an open, often fractal structure, depending on the growth
process. Larger particles are still expected to grow at collision velocities of
about 1m/s. Experiments also show that, after an intermezzo of destructive
velocities, high collision velocities above 10m/s on porous materials again
lead to net growth of the target. Considerations of dust-gas interactions show
that collision velocities for particles not too different in surface-to-mass
ratio remain limited up to sizes about 1m, and growth seems to be guaranteed to
reach these sizes quickly and easily. For meter sizes, coupling to nebula
turbulence makes destructive processes more likely. Global aggregation models
show that in a turbulent nebula, small particles are swept up too fast to be
consistent with observations of disks. An extended phase may therefore exist in
the nebula during which the small particle component is kept alive through
collisions driven by turbulence which frustrates growth to planetesimals until
conditions are more favorable for one or more reasons.Comment: Protostars and Planets V (PPV) review. 18 pages, 5 figure
libcppa - Designing an Actor Semantic for C++11
Parallel hardware makes concurrency mandatory for efficient program
execution. However, writing concurrent software is both challenging and
error-prone. C++11 provides standard facilities for multiprogramming, such as
atomic operations with acquire/release semantics and RAII mutex locking, but
these primitives remain too low-level. Using them both correctly and
efficiently still requires expert knowledge and hand-crafting. The actor model
replaces implicit communication by sharing with an explicit message passing
mechanism. It applies to concurrency as well as distribution, and a lightweight
actor model implementation that schedules all actors in a properly
pre-dimensioned thread pool can outperform equivalent thread-based
applications. However, the actor model did not enter the domain of native
programming languages yet besides vendor-specific island solutions. With the
open source library libcppa, we want to combine the ability to build reliable
and distributed systems provided by the actor model with the performance and
resource-efficiency of C++11.Comment: 10 page
Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Cen and AC Her
Context: We study the structure and evolution of circumstellar discs around
evolved binaries and their impact on the evolution of the central system. Aims:
To study in detail the binary nature of RUCen and ACHer, as well as the
structure and mineralogy of the circumstellar environment. Methods: We combine
multi-wavelength observations with a 2D radiative transfer study. Our radial
velocity program studies the central stars, while our Spitzer spectra and
broad-band SEDs are used to constrain mineralogy, grain sizes and physical
structure of the circumstellar environment. Results: We determine the orbital
elements of RUCen showing that the orbit is highly eccentric with a rather long
period of 1500 days. The infrared spectra of both objects are very similar and
the spectral dust features are dominated by Mg-rich crystalline silicates. The
small peak-to-continuum ratios are interpreted as being due to large grains.
Our model contains two components with a cold midplain dominated by large
grains, and the near- and mid-IR which is dominated by the emission of smaller
silicates. The infrared excess is well modelled assuming a hydrostatic passive
irradiated disc. The profile-fitting of the dust resonances shows that the
grains must be very irregular. Conclusions: These two prototypical RVTauri
pulsators with circumstellar dust are binaries where the dust is trapped in a
stable disc. The mineralogy and grain sizes show that the dust is highly
processed, both in crystallinity and grain size. The cool crystals show that
either radial mixing is very efficient and/or that the thermal history at grain
formation has been very different from that in outflows. The physical processes
governing the structure of these discs are similar to those observed in
protoplanetary discs around young stellar objects.Comment: 11 pages, 12 figures, accepted for publication by A&
Numerical determination of the material properties of porous dust cakes
The formation of planetesimals requires the growth of dust particles through
collisions. Micron-sized particles must grow by many orders of magnitude in
mass. In order to understand and model the processes during this growth, the
mechanical properties, and the interaction cross sections of aggregates with
surrounding gas must be well understood. Recent advances in experimental
(laboratory) studies now provide the background for pushing numerical aggregate
models onto a new level. We present the calibration of a previously tested
model of aggregate dynamics. We use plastic deformation of surface asperities
as the physical model to bring critical velocities for sticking into accordance
with experimental results. The modified code is then used to compute
compression strength and the velocity of sound in the aggregate at different
densities. We compare these predictions with experimental results and conclude
that the new code is capable of studying the properties of small aggregates.Comment: Accepted for publication in A&
Accretion through the inner hole of transitional disks: What happens to the dust?
We study the effect of radiation pressure on the dust in the inner rim of
transitional disks with large inner holes. In particular, we evaluate whether
radiation pressure can be responsible for keeping the inner holes dust-free,
while allowing gas accretion to proceed. This has been proposed in a paper by
Chiang and Murray-Clay (2007, Nature Physics 3, p. 604) who explain the
formation of these holes as an inside-out evacuation due to X- ray-triggered
accretion of the innermost layer of the disk rim outside of the hole. We show
that radiation pressure is clearly incapable of stopping dust from flowing into
the hole because of dust pile-up and optical depth effects, and also because of
viscous mixing. Other mechanisms need to be found to explain the persistence of
the opacity hole in the presence of accretion, and we speculate on possible
solutions.Comment: 6 pages, 3 figures, Accepted for publication by Astronomy and
Astrophysic
Closed-form weak localization magnetoconductivity in quantum wells with arbitrary Rashba and Dresselhaus spin-orbit interactions
We derive a closed-form expression for the weak localization (WL) corrections
to the magnetoconductivity of a 2D electron system with arbitrary Rashba
and Dresselhaus (linear) and (cubic) spin-orbit
interaction couplings, in a perpendicular magnetic field geometry. In a system
of reference with an in-plane axis chosen as the high spin-symmetry
direction at , we formulate a new algorithm to calculate the
three independent contributions that lead to WL. The antilocalization is
counterbalanced by the term associated with the spin-relaxation along
, dependent only on . The other term is generated by
two identical scattering modes characterized by spin-relaxation rates which are
explicit functions of the orientation of the scattered momentum. Excellent
agreement is found with data from GaAs quantum wells, where in particular our
theory correctly captures the shift of the minima of the WL curves as a
function of . This suggests that the anisotropy of the effective
spin relaxation rates is fundamental to understanding the effect of the SO
coupling in transport.Comment: 5 pages, 2 figure
- …
