702 research outputs found

    Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications.

    Get PDF
    Methylation of cytosine deoxynucleotides generates 5-methylcytosine (m(5)dC), a well-established epigenetic mark. However, in higher eukaryotes much less is known about modifications affecting other deoxynucleotides. Here, we report the detection of N(6)-methyldeoxyadenosine (m(6)dA) in vertebrate DNA, specifically in Xenopus laevis but also in other species including mouse and human. Our methylome analysis reveals that m(6)dA is widely distributed across the eukaryotic genome and is present in different cell types but is commonly depleted from gene exons. Thus, direct DNA modifications might be more widespread than previously thought.M.J.K. was supported by the Long-Term Human Frontiers Fellowship (LT000149/2010-L), the Medical Research Council grant (G1001690), and by the Isaac Newton Trust Fellowship (R G76588). The work was sponsored by the Biotechnology and Biological Sciences Research Council grant BB/M022994/1 (J.B.G. and M.J.K.). The Gurdon laboratory is funded by the grant 101050/Z/13/Z (J.B.G.) from the Wellcome Trust, and is supported by the Gurdon Institute core grants, namely by the Wellcome Trust Core Grant (092096/Z/10/Z) and by the Cancer Research UK Grant (C6946/A14492). C.R.B. and G.E.A. are funded by the Wellcome Trust Core Grant. We are grateful to D. Simpson and R. Jones-Green for preparing X. laevis eggs and oocytes, F. Miller for providing us with M. musculus tissue, T. Dyl for X. laevis eggs and D. rerio samples, and to Gurdon laboratory members for their critical comments. We thank U. Ruether for providing us with M. musculus kidney DNA (Entwicklungs- und Molekularbiologie der Tiere, Heinrich Heine Universitaet Duesseldorf, Germany). We also thank J. Ahringer, S. Jackson, A. Bannister and T. Kouzarides for critical input and advice, M. Sciacovelli and E. Gaude for suggestions.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.314

    Regulation and function of CMTR1-dependent mRNA cap methylation

    Get PDF
    mRNA is modified co-transcriptionally at the 5' end by the addition of an inverted guanosine cap structure which can be methylated at several positions. The mRNA cap recruits proteins involved in gene expression and identifies the transcript as being cellular or "self" in the innate immune response. Methylation of the first transcribed nucleotide on the ribose 2'-O position is a prevalent cap modification which has roles in splicing, translation and provides protection against the innate immune response. In this review we discuss the regulation and function of CMTR1, the first transcribed nucleotide ribose 2'-O methyltransferase, and the molecular interactions which mediate methylated 2'-O ribose function

    m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

    Get PDF
    N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins1, 2, 3, 4, 5, 6, 7. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir)8, 9, 10, 11, 12. In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl)13. However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain3. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models5, 7, 14, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5′ untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression

    A multidimensional platform for the purification of non-coding RNA species

    Get PDF
    A renewed interest in non-coding RNA (ncRNA) has led to the discovery of novel RNA species and post-transcriptional ribonucleoside modifications, and an emerging appreciation for the role of ncRNA in RNA epigenetics. Although much can be learned by amplification-based analysis of ncRNA sequence and quantity, there is a significant need for direct analysis of RNA, which has led to numerous methods for purification of specific ncRNA molecules. However, no single method allows purification of the full range of cellular ncRNA species. To this end, we developed a multidimensional chromatographic platform to resolve, isolate and quantify all canonical ncRNAs in a single sample of cells or tissue, as well as novel ncRNA species. The applicability of the platform is demonstrated in analyses of ncRNA from bacteria, human cells and plasmodium-infected reticulocytes, as well as a viral RNA genome. Among the many potential applications of this platform are a system-level analysis of the dozens of modified ribonucleosides in ncRNA, characterization of novel long ncRNA species, enhanced detection of rare transcript variants and analysis of viral genomes.Singapore-MIT Alliance for Research and TechnologyNational Institute of Environmental Health Sciences (ES017010)National Institute of Environmental Health Sciences (ES002109

    Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    Get PDF
    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function—it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.American Cancer Society (Robbie Sue Mudd Kidney Cancer Research Scholar Grant RSG-13-396-01-RMC)National Institutes of Health (U.S.) (GM094303)National Institutes of Health (U.S.) (GM081399)American Cancer Society. New England Division (Ellison Foundation Postdoctoral Fellowship)American Cancer Society (Postdoctoral Fellowship PF-13-319-01-RMC)National Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Tensiones entre el acceso a la justicia y personas con padecimiento en salud mental

    Get PDF
    En el presente trabajo buscamos analizar un recorte institucional que visibiliza la afectación de derechos de sujetos en situación de vulnerabilidad. Describiremos cómo opera o incide la intervención desde el ámbito institucional en el que se realizó la práctica, en pos de propiciar los derechos de las personas. Desarrollaremos cómo los marcos legales (Ley de Protección integral de derechos de NNyA; Ley de Salud Mental, nuevo Código Civil y Comercial de la Argentina y la Convención sobre los Derechos del Niño) afectan la intervención.In the present work we seek to analyze an institutional cut that makes visible the affectation of rights of subjects in vulnerable situations. We will describe how the intervention operates or affects from the institutional sphere in which the practice was carried out, in order to promote people’s rights. We will develop how the legal frameworks (Law for the Comprehensive Protection of the Rights of NNyA; Mental Health Law, new Civil and Commercial Code and the Convention on the Rights of the Child) affect the intervention.Facultad de Psicologí

    m^6A RNA methylation promotes XIST-mediated transcriptional repression

    Get PDF
    The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N^6-methyladenosine (m^6A) residues—a reversible base modification of unknown function in long non-coding RNAs. We show that m^6A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m^6A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m^6A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m^6A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m^6A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m^6A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m^6A. These data reveal a pathway of m^6A formation and recognition required for XIST-mediated transcriptional repression

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy
    corecore