155 research outputs found
Self-consistent determination of the perpendicular strain profile of implanted Si by analysis of x-ray rocking curves
Results of a determination of strain perpendicular to the surface and of the damage in (100) Si single crystals irradiated by 250-keV Ar+ ions at 77 K are presented. Double-crystal x-ray diffraction and dynamical x-ray diffraction theory are used. Trial strain and damage distributions were guided by transmission electron microscope observations and Monte Carlo simulation of ion energy deposition. The perpendicular strain and damage profiles, determined after sequentially removing thin layers of Ar+-implanted Si, were shown to be self-consistent, proving the uniqueness of the deconvolution. Agreement between calculated and experimental rocking curves is obtained with strain and damage distributions which closely follow the shape of the trim simulations from the maximum damage to the end of the ion range but fall off more rapidly than the simulation curve near the surface. Comparison of the trim simulation and the strain profile of Ar+-implanted Si reveals the importance of annealing during and after implantation and the role of complex defects in the final residual strain distribution
Surface-micromachined Ta–Si–N beams for use in micromechanics
Realization and characterization of free-standing surface-microstructures based on Ta-Si-N films are presented. Due to their significant physical and chemical properties, such ternary films are promising candidates for application in microelectromechanical devices
Properties of InGaN deposited on Glass at Low Temperature
We have investigated the properties of InGaN grown at low temperature on glass substrates by a plasma enhanced MBE process. The goal of this study was to evaluate the potential of InGaN as an oxide-free, transparent conductor material which could be deposited at or slightly above room temperature with minimal interaction or damage to the underlying material. InxGa1−xN films deposited on glass, even without substrate heating, are highly crystalline, but the crystallinity as measured by x-ray degrades at x 0.5) is conductive due to its high electron concentration. InN electron Hall mobilities > 20 cm2/Vs when grown at 400°C, and ~ 7 cm2/Vs on unheated substrates were obtained. The addition of GaN degraded the electrical properties of the films to a greater extent than it improved the transparency. As a result, the best transparent conductor films were pure InN which, when deposited at 400°C, were half as transparent in the green as an indium tin oxide film having the same sheet resistanc
X-Ray Diffraction Determination of Stresses in Thin Films
This paper presents the methodology employed in the determination of the stress tensor for thin crystalline films using x-ray rocking curves. Use of the same equipment for the determination of the average stress in poly- or non-crystalline thin films attached to a crystalline substrate is also discussed. In this case the lattice curvature of the substrate is determined by measurement of the shift In the Bragg peak with lateral position in the substrate.
Strains in single crystal layers may be measured using Bragg diffraction from the layers and from the substrate or a reference crystal, with the highest strain sensitivity of any known technique. The difference in Bragg angles for a strained and an unstrained crystal is related to the change in d spacing of the Bragg planes, and the elastic strain is related to this angular difference. The separation of two peaks on an x-ray rocking curve is generally not equal to the difference in Bragg angles of two diffracting crystals, so diffractometer measurements must be carefully Interpreted in order to obtain x-ray strains in crystalline films (x-ray strains are strains relative to the reference crystal). The unstrained d spacings of the film and the d spacings of the reference crystal must be known to obtain the elastic strains in the film, from which the stress tensor is determined
Improved optical activation of ion-implanted Zn acceptors in GaN by annealing under N2 overpressure
We investigated the properties of ion-implanted GaN:Zn annealed under various conditions using photoluminescence (PL) and high resolution x-ray diffraction (HRXRD). Epitaxial GaN/sapphire of high optical quality was ion-implanted with a 1013 cm−2 dose of Zn+ ions at 200 keV. The sample was capped with 200 Å of SiNx and then diced into numerous pieces which were annealed under varied conditions in an attempt to optically activate the Zn. Annealing was performed in a tube furnace under flowing N2, an atmospheric pressure MOCVD reactor under flowing NH3 or N2, and under an N2 overpressure of 190 atm. The observed improvement in the optical quality of GaN:Zn annealed under N2 overpressure yields further insights into the trade-off between defect annealing and N loss from the GaN crysta
Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures
We investigated the non centrosymmetric superconductors CePtSi and UIr by
the ac heat capacity measurement under pressures. We determined the pressure
phase diagrams of these compounds. In CePtSi, the N\'{e}el temperature
= 2.2 K decreases with increasing pressure and becomes zero at the
critical pressure 0.6 GPa. On the other hand, the
superconducting phase exists in a wider pressure region from ambient pressure
to 1.5 GPa. The phase diagram of CePtSi is very
unique and has never been reported before for other heavy fermion
superconductors. In UIr, the heat capacity shows an anomaly at the Curie
temperature = 46 K at ambient pressure, and the heat capacity
anomaly shifts to lower temperatures with increasing pressure. The present
pressure dependence of was consistent with the previous studies by
the resistivity and magnetization measurements. Previous ac magnetic
susceptibility and resistivity measurements suggested the existence of three
ferromagnetic phases, FM1-3. shows a bending structure at 1.98,
2.21, and 2.40 GPa .The temperatures where these anomalies are observed are
close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel
Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29
2006, Fukuoka Japa
Non-Centrosymmetric Heavy-Fermion Superconductors
In this chapter we discuss the physical properties of a particular family of
non-centrosymmetric superconductors belonging to the class heavy-fermion
compounds. This group includes the ferromagnet UIr and the antiferromagnets
CeRhSi3, CeIrSi3, CeCoGe3, CeIrGe3 and CePt3Si, of which all but CePt3Si become
superconducting only under pressure. Each of these superconductors has
intriguing and interesting properties. We first analyze CePt3Si, then review
CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in
their magnetic and electrical properties, and finally discuss UIr. For each
material we discuss the crystal structure, magnetic order, occurrence of
superconductivity, phase diagram, characteristic parameters, superconducting
properties and pairing states. We present an overview of the similarities and
differences between all these six compounds at the end.Comment: To appear in "Non-Centrosymmetric Superconductors: Introduction and
Overview", Lecture Notes in Physics 847, edited by E. Bauer and M. Sigrist
(Springer-Verlag, Berlin Heidelberg, 2012) Chap. 2, pp. 35-7
Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces
Maladaptive defense mechanisms moderate treatment outcome in 6 months versus 12 months dialectical-behavior therapy for borderline personality disorder
Social, Cognitive, and Affective Decision Makin
- …
