186 research outputs found

    Rapid Detection of the Varicella Zoster Virus in Saliva

    Get PDF
    Varicella zoster virus (VZV) causes chicken pox on first exposure (usually in children), and reactivates from latency causing shingles (usually in adults). Shingles can be extremely painful, causing nerve damage, organ damage, and blindness in some cases. The virus can be life-threatening in immune-compromised individuals. The virus is very difficult to culture for diagnosis, requiring a week or longer. This invention is a rapid test for VZV from a saliva sample and can be performed in a doctor s office. The kit is small, compact, and lightweight. Detec tion is sensitive, specific, and noninvasive (no needles); only a saliva sample is required. The test provides results in minutes. The entire test is performed in a closed system, with no exposure to infectious materials. The components are made mostly of inexpensive plastic injection molded parts, many of which can be purchased off the shelf and merely assembled. All biological waste is contained for fast, efficient disposal. This innovation was made possible because of discovery of a NASA scientists flight experiment showing the presence of VZV in saliva during high stress periods and disease. This finding enables clinicians to quickly screen patients for VZV and treat the ones that show positive results with antiviral medicines. This promotes a rapid recovery, easing of pain and symptoms, and reduces chances of complications from zoster. Screening of high-risk patients could be incorporated as part of a regular physical exam. These patients include the elderly, pregnant women, and immune-compromised individuals. In these patients, VZV can be a life-threatening disease. In both high- and low-risk patients, early detection and treatment with antiviral drugs can dramatically decrease or even eliminate the clinical manifestation of disease

    The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI

    Get PDF
    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Get PDF
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove

    The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics

    Full text link
    We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408 sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than ~20 arcsec. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our ability to compare flux densities. We detect no transients at flux densities greater than 40 mJy in comparison with NVSS, and place a 2-sigma upper limit on the transient rate for such sources of 0.004 per square degree. These results suggest that the > 1 Jy transients reported by Matsumura et al. (2009) may not be true transients, but rather variable sources at their flux density threshold.Comment: 41 pages, 19 figures, ApJ accepted; corrected minor typo in Table

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Full text link
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove

    Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment

    Get PDF
    BACKGROUND: Extra-cellular shear force is an important environmental parameter that is significant both medically and in the space environment. Escherichia coli cells grown in a low-shear modeled microgravity (LSMMG) environment produced in a high aspect rotating vessel (HARV) were subjected to transcriptional and physiological analysis. RESULTS: Aerobic LSMMG cultures were grown in rich (LB) and minimal (MOPS + glucose) medium with a normal gravity vector HARV control. Reproducible changes in transcription were seen, but no specific LSMMG responsive genes were identified. Instead, absence of shear and a randomized gravity vector appears to cause local extra-cellular environmental changes, which elicit reproducible cellular responses. In minimal media, the majority of the significantly up- or down-regulated genes of known function were associated with the cell envelope. In rich medium, most LSMMG down-regulated genes were involved in translation. No observable changes in post-culture stress responses and antibiotic sensitivity were seen in cells immediately after exposure to LSMMG. Comparison with earlier studies of Salmonella enterica serovar Typhimurium conducted under similar growth conditions, revealed essentially no similarity in the genes that were significantly up- or down-regulated. CONCLUSION: Comparison of these results to previous studies suggests that different organisms may dramatically differ in their responses to medically significant low-shear and space environments. Depending on their specific response, some organisms, such as Salmonella, may become preadapted in a manner that predisposes them to increased virulence

    The Iowa Homemaker vol.41, no.7

    Get PDF
    Foolproof Bachelor Budget, Gaylin Morgan, page 4 A “Lone Male”, Joy Reese, page 5 It All Started With ADAM, Sherry Stoddard, page 6 Going Forth, Dan Taylor, page 9 Bottled Beauty Since 1600 B.C., Diane Sharbo, page 10 What’s the Matter?, Bob MacDonough, page 11 The Awful Beginning, Don Wishart, page 12 Found: Scientific Formula for Women, page 15 When Men Entertain, Sylvia Noid, page 16 The Man Behind “the lady from Hancock”, LaVeda Jansonius, page 16 “We Want Steak!”, Barb Pierson, page 1

    Lake surface water temperature and oxygen saturation resistance and resilience following extreme storms: chlorophyll a shapes resistance to storms

    Get PDF
    Extreme storms are becoming more frequent and intense with climate change. Assessing lake ecosystem responses to extreme storms (resistance) and their capacity to recover (resilience) is critical for predicting the future of lake ecosystems in a stormier world. Here we provide a systematic, standardized, and quantitative approach for identifying critical processes shaping lake ecosystem resistance following extreme storms. We identified 576 extreme wind storms for 8 lakes in Europe and North America. We calculated the resistance and resilience of each lake’s surface water temperature and oxygen saturation following each storm. Sharp decreases and increases in epilimnetic temperature and oxygen saturation caused by extreme storms resulted in unpredictable changes in lake resilience values across lakes, with a tendency not to return to pre-storm conditions. Resistance was primarily shaped by mean annual chlorophyll a concentration and its overall relationship with other physiochemical lake and storm characteristics. We modeled variation in resistance as a function of both lake and storm conditions, and the results suggested that eutrophic lakes were consistently less resistant to extreme storms compared to oligotrophic lakes. The lakes tended to be most resistant to extreme storms when antecedent surface waters were warm and oxygen saturated, but overall resistance was highest in lakes with low mean annual concentrations of chlorophyll a and total phosphorus. Our findings suggest physiochemical responses of lakes to meteorological forcing are shaped by ecological and/or physical feedback and processes that determine trophic state, such as the influence of differences in nutrient availability and algal growth

    Global warming will change the thermal structure of Lough Feeagh, a sentinel lake in the Irish landscape, by the end of the twenty-first century

    Get PDF
    Peer reviewedRecent developments in impact modelling of global warming on lakes have resulted in a greater understanding of how these vital ecosystems are likely to respond. However, there has been little quantitative analysis of this in an Irish context, despite the importance of lakes in the island's landscape. Here, we explore the impact of global warming on the hydrodynamics and thermal structure of a sentinel Irish lake under future climate scenarios. A 1D lake model, Simstrat, was calibrated and validated using water temperature data collected from Lough Feeagh, a site of long-term ecological research in the west of Ireland. Once validated, the model was then driven by daily climate model projections to generate informative thermal metrics for the time period of 2006–2099. Despite the moderating influence of the Atlantic, projections indicate that global warming will have a marked effect on the thermal structure of Feeagh, with surface water temperatures set to warm by 0.75°C under a more stringent mitigation pathway (RCP 2.6) and 2.42°C under a non-mitigation pathway (RCP 8.5). While warming was projected to be greatest in summer in the epilimnion, winter warming was greater than in other seasons in the hypolimnion. Stratification is projected to become more stable and earlier, and the growing season to be longer by 11 to 47 days, depending on mitigation pathways. Future studies could use a similar modelling workflow to investigate the possible implications of global warming on other Irish lakes, particularly those of specific societal importance or those of conservation interest
    corecore