4,443 research outputs found

    The progenitors of type Ia supernovae in the semidetached binaries with red giant donors

    Full text link
    Context. The companions of the exploding carbon-oxygen white dwarfs (CO WDs) for producing type Ia supernovae (SNe Ia) are still not conclusively confirmed. A red-giant (RG) star has been suggested to be the mass donor of the exploding WD, named as the symbiotic channel. However, previous studies on the this channel gave a relatively low rate of SNe Ia. Aims. We aim to systematically investigate the parameter space, Galactic rates and delay time distributions of SNe Ia from the symbiotic channel by employing a revised mass-transfer prescription. Methods. We adopted an integrated mass-transfer prescription to calculate the mass-transfer process from a RG star onto the WD. In this prescription, the mass-transfer rate varies with the local material states. Results. We evolved a large number of WD+RG systems, and found that the parameter space of WD+RG systems for producing SNe Ia is significantly enlarged. This channel could produce SNe Ia with intermediate and old ages, contributing to at most 5% of all SNe Ia in the Galaxy. Our model increases the SN Ia rate from this channel by a factor of 5. We suggest that the symbiotic systems RS Oph and T CrB are strong candidates for the progenitors of SNe Ia.Comment: 8 pages, 6 figure

    Coherent Online Video Style Transfer

    Full text link
    Training a feed-forward network for fast neural style transfer of images is proven to be successful. However, the naive extension to process video frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near real-time. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures the consistency over larger period of time. Our network can incorporate different image stylization networks. We show that the proposed method clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitudes faster in runtime.Comment: Corrected typo
    corecore