269 research outputs found

    Enhanced Management of Personal Astronomical Data with FITSManager

    Full text link
    Although the roles of data centers and computing centers are becoming more and more important, and on-line research is becoming the mainstream for astronomy, individual research based on locally hosted data is still very common. With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.Comment: 12 pages, 9 figures, Accepted for publication in New Astronom

    The Galactic extinction and reddening from the South Galactic Cap U-band Sky Survey: u band galaxy number counts and uru-r color distribution

    Full text link
    We study the integral Galactic extinction and reddening based on the galaxy catalog of the South Galactic Cap U-band Sky Survey (SCUSS), where uu band galaxy number counts and uru-r color distribution are used to derive the Galactic extinction and reddening respectively. We compare these independent statistical measurements with the reddening map of \citet{Schlegel1998}(SFD) and find that both the extinction and reddening from the number counts and color distribution are in good agreement with the SFD results at low extinction regions (E(BV)SFD<0.12E(B-V)^{SFD}<0.12 mag). However, for high extinction regions (E(BV)SFD>0.12E(B-V)^{SFD}>0.12 mag), the SFD map overestimates the Galactic reddening systematically, which can be approximated by a linear relation ΔE(BV)=0.43[E(BV)SFD0.12\Delta E(B-V)= 0.43[E(B-V)^{SFD}-0.12]. By combing the results of galaxy number counts and color distribution together, we find that the shape of the Galactic extinction curve is in good agreement with the standard RV=3.1R_V=3.1 extinction law of \cite{ODonnell1994}

    Project Overview of the Beijing-Arizona Sky Survey

    Full text link
    The Beijing-Arizona Sky Survey (BASS) is a wide-field two-band photometric survey of the Northern Galactic Cap using the 90Prime imager on the 2.3 m Bok telescope at Kitt Peak. It is a four-year collaboration between the National Astronomical Observatory of China and Steward Observatory, the University of Arizona, serving as one of the three imaging surveys to provide photometric input catalogs for target selection of the Dark Energy Spectroscopic Instrument (DESI) project. BASS will take up to 240 dark/grey nights to cover an area of about 5400 deg2^2 in the gg and rr bands. The 5σ\sigma limiting AB magnitudes for point sources in the two bands, corrected for the Galactic extinction, are 24.0 and 23.4 mag, respectively. BASS, together with other DESI imaging surveys, will provide unique science opportunities that cover a wide range of topics in both Galactic and extragalactic astronomy.Comment: 10 pages, submitted to PAS
    corecore