127 research outputs found
Role of PINCH and Its Partner Tumor Suppressor Rsu-1 in Regulating Liver Size and Tumorigenesis
Particularly interesting new cysteine-histidine-rich protein (PINCH) protein is part of the ternary complex known as the IPP (integrin linked kinase (ILK)-PINCH-Parvin-α) complex. PINCH itself binds to ILK and to another protein known as Rsu-1 (Ras suppressor 1). We generated PINCH 1 and PINCH 2 Double knockout mice (referred as PINCH DKO mice). PINCH2 elimination was systemic whereas PINCH1 elimination was targeted to hepatocytes. The genetically modified mice were born normal. The mice were sacrificed at different ages after birth. Soon after birth, they developed abnormal hepatic histology characterized by disorderly hepatic plates, increased proliferation of hepatocytes and biliary cells and increased deposition of extracellular matrix. After a sustained and prolonged proliferation of all epithelial components, proliferation subsided and final liver weight by the end of 30 weeks in livers with PINCH DKO deficient hepatocytes was 40% larger than the control mice. The livers of the PINCH DKO mice were also very stiff due to increased ECM deposition throughout the liver, with no observed nodularity. Mice developed liver cancer by one year. These mice regenerated normally when subjected to 70% partial hepatectomy and did not show any termination defect. Ras suppressor 1 (Rsu-1) protein, the binding partner of PINCH is frequently deleted in human liver cancers. Rsu-1 expression is dramatically decreased in PINCH DKO mouse livers. Increased expression of Rsu-1 suppressed cell proliferation and migration in HCC cell lines. These changes were brought about not by affecting activation of Ras (as its name suggests) but by suppression of Ras downstream signaling via RhoGTPase proteins. In conclusion, our studies suggest that removal of PINCH results in enlargement of liver and tumorigenesis. Decreased levels of Rsu-1, a partner for PINCH and a protein often deleted in human liver cancer, may play an important role in the development of the observed phenotype. © 2013 Donthamsetty et al
Suvarna Durgha Donthamsetty
Background: The comparison between Oracle and MySQL databases is integral to the functioning of modern information systems, impacting the success and decision- making processes of organizations. Oracle, a robust relational database management system (RDBMS), is widely recognized for its extensive feature set, scalability, and robust security measures, making it the preferred choice for large enterprises handling vast amounts of data. In contrast, MySQL, an open-source RDBMS acquired by Oracle Corporation, is favored for its affordability, adaptability, and user-friendly interface, particularly among startups and smaller enterprises.
Objectives: The primary objective of this study is to conduct a comprehensive comparative analysis of Oracle and MySQL databases, evaluating various factors such as features, performance, scalability, cost, security, availability, compatibility, flexibility, and future developments. By addressing specific research questions pertaining to query execution, scalability, community support, availability, and relia- bility, decision-makers can gain valuable insights to inform their database selection process.
Methods: To achieve the objectives, a structured literature review on both Oracle and MySQL databases will be conducted, along with a survey and an examination of metrics related to query execution and scalability. This review will be supplemented by an analysis of the databases’ feature sets to identify unique capabilities relevant to organizational requirements. Additionally, the study will analyze query execution and scalability to gain an in-depth understanding of their impact on decision-making. Methodological limitations will be acknowledged, and data collection and evaluation procedures will be clearly outlined.
Results: The comparative analysis will provide insights into the strengths and weaknesses of Oracle and MySQL databases across various dimensions, including features and capabilities, performance and scalability, cost and licensing, security and safety measures, availability and dependability, compatibility and ecosystem, flexibility and customization, and future developments and trends. Specific findings related to query execution, scalability, community support, availability, and reliability will be highlighted to assist decision-makers in making informed choices.
Conclusion: In conclusion, the study aims to offer meaningful perspectives to technology supporters and decision-makers, enabling them to navigate the complex landscape of database management systems effectively. By synthesizing the findings and addressing the identified research questions, the study seeks to facilitate informed decisions in selecting, deploying, and managing Oracle or MySQL databases based on the unique needs and objectives of organizations
An Instrumental Case Study on Testing an Integrated Framework for Tutoring Sessions
The objective for the current qualitative case study was to examine participants’ perceptions on the tutor coaching and session review frameworks. The location of the study was at the tutor coach’s place of business. At the beginning of the study, both tutor coach and tutors were trained on how to implement the specific frameworks associated with their roles in the tutoring process. Tutors who participated in the study kept weekly reflection journals regarding their tutoring experiences. After 6 weeks, the tutor coach participated in 30-minute open-ended phone interviews related to the tutor-coaching framework. All interviews were recorded and transcribed. Tutors completed an online questionnaire about the methods and strategies used to conduct effective tutoring sessions. Themes were extracted related to tutor coaching, session reviews, effective tutoring sessions, and general tutoring from the data: interview transcripts, online surveys, monitoring notes, and weekly journals. There were 12 emerging themes, 7 categories, and 9 sub-categories that were coded and analyzed. The findings revealed that effective tutoring sessions required lesson preparation and the session review framework provided an avenue of viewing and keeping track on what to look for in tutoring sessions. Another finding was that the tutoring coaching framework influenced coaching with tutors
Protection against Fas-induced fulminant hepatic failure in liver specific integrin linked kinase knockout mice
Background\ud
\ud
Programmed cell death or apoptosis is an essential process for tissue homeostasis. Hepatocyte apoptosis is a common mechanism to many forms of liver disease. This study was undertaken to test the role of ILK in hepatocyte survival and response to injury using a Jo-2-induced apoptosis model.\ud
Methods\ud
\ud
For survival experiments, ILK KO and WT mice received a single intraperitoneal injection of the agonistic anti-Fas monoclonal antibody Jo-2 at the lethal dose (0.4 μg/g body weight) or sublethal dose (0.16 μg/g body weight). For further mechanistic studies sublethal dose of Fas monoclonal antibody was chosen.\ud
\ud
Results\ud
\ud
There was 100% mortality in the WT mice as compared to 50% in the KO mice. We also found that hepatocyte specific ILK KO mice (integrin linked kinase) died much later than WT mice after challenge with a lethal dose of Fas agonist Jo-2. At sublethal dose of Jo-2, there was 20% mortality in KO mice with minimal apoptosis whereas WT mice developed extensive apoptosis and liver injury leading to 70% mortality due to liver failure at 12 h. Proteins known to be associated with cell survival/death were differentially expressed in the 2 groups. In ILK KO mice there was downregulation of proapoptotic genes and upregulation of antiapoptotic genes.\ud
\ud
Conclusions\ud
\ud
Mechanistic insights revealed that pro-survival pathways such as Akt, ERK1/2, and NFkB signaling were upregulated in the ILK KO mice. Inhibition of only NFkB and ERK1/2 signaling led to an increase in the susceptibility of ILK KO hepatocytes to Jo-2-induced apoptosis. These studies suggest that ILK elimination from hepatocytes protects against Jo-2 induced apoptosis by upregulating survival pathways. FAK decrease may also play a role in this process. The results presented show that the signaling effects of ILK related to these functions are mediated in part mediated through NFkB and ERK1/2 signaling
KIFCI, A Novel Putative Prognostic Biomarker for Ovarian Adenocarcinomas: Delineating Protein Interaction Networks and Signaling Circuitries
Background: Amplified centrosomes in cancers are recently garnering a lot of attention as an emerging hub of diagnostic, prognostic and therapeutic targets. Ovarian adenocarcinomas commonly harbor supernumerary centrosomes that drive chromosomal instability. A centrosome clustering molecule, KIFC1, is indispensable for the viability of extra centrosome-bearing cancer cells, and may underlie progression of ovarian cancers. Methods: Centrosome amplification in low- and high- grade serous ovarian adenocarcinomas was quantitated employing confocal imaging. KIFC1 expression was analyzed in ovarian tumors using publically-available databases. Associated grade, stage and clinical information from these databases were plotted for KIFC1 gene expression values. Furthermore, interactions and functional annotation of KIFC1 and its highly correlated genes were studied using DAVID and STRING 9.1. Results: Clinical specimens of ovarian cancers display robust centrosome amplification and deploy centrosome clustering to execute an error-prone mitosis to enable karyotypic heterogeneity that fosters tumor progression and aggressiveness. Our in silico analyses showed KIFC1 overexpression in human ovarian tumors (n = 1090) and its upregulation associated with tumor aggressiveness utilizing publically-available gene expression databases. KIFC1 expression correlated with advanced tumor grade and stage. Dichotomization of KIFC1 levels revealed a significantly lower overall survival time for patients in high KIFC1 group. Intriguingly, in a matched-cohort of primary (n = 7) and metastatic (n = 7) ovarian samples, no significant differences in KIFC1 expression were detectable, suggesting that high KIFC1 expression may serve as a marker of metastases onset. Nonetheless, KIFC1 levels in both primary and matched metastatic sites were significantly higher compared to normal tissue . Ingenuity based network prediction algorithms combined with pre-established protein interaction networks uncovered several novel cell-cycle related partner genes on the basis of interconnectivity, illuminating the centrosome clustering independent agenda of KIFC1 in ovarian tumor progression. Conclusions: Ovarian cancers display amplified centrosomes, a feature of aggressive tumors. To cope up with the abnormal centrosomal load, ovarian cancer cells upregulate genes like KIFC1 that are known to induce centrosome clustering. Our data underscore KIFC1 as a putative biomarker that predicts worse prognosis, poor overall survival and may serve as a potential marker of onset of metastatic dissemination in ovarian cancer patients
Rampant Centrosome Amplification Underlies more Aggressive Disease Course of Triple Negative Breast Cancers
Centrosome amplification (CA), a cell-biological trait, characterizes pre-neoplastic and pre-invasive lesions and is associated with tumor aggressiveness. Recent studies suggest that CA leads to malignant transformation and promotes invasion in mammary epithelial cells. Triple negative breast cancer (TNBC), a histologically-aggressive subtype shows high recurrence, metastases, and mortality rates. Since TNBC and non- TNBC follow variable kinetics of metastatic progression, they constitute a novel test bed to explore if severity and nature of CA can distinguish them apart. We quantitatively assessed structural and numerical centrosomal aberrations for each patient sample in a large-cohort of grade-matched TNBC (n = 30) and non-TNBC (n = 98) cases employing multi-color confocal imaging. Our data establish differences in incidence and severity of CA between TNBC and non-TNBC cell lines and clinical specimens. We found strong correlation between CA and aggressiveness markers associated with metastasis in 20 pairs of grade-matched TNBC and non-TNBC specimens (p \u3c 0.02). Time-lapse imaging of MDA-MB-231 cells harboring amplified centrosomes demonstrated enhanced migratory ability. Our study bridges a vital knowledge gap by pinpointing that CA underlies breast cancer aggressiveness. This previously unrecognized organellar inequality at the centrosome level may allow early-risk prediction and explain higher tumor aggressiveness and mortality rates in TNBC patients
HSET Overexpression Fuels Tumor Progression via Centrosome Clustering-Independent Mechanisms in Breast Cancer Patients
Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cellcycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target
Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics
Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural ‘‘milieu’’ confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYPspecific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE’s inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an indepth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens
Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells
Centrosome aberrations (CA) and abnormal mitoses are considered beacons of malignancy. Cancer cell doubling times in patient tumors are longer than in cultures, but differences in CA between tumors and cultured cells are uncharacterized. We compare mitoses and CA in patient tumors, xenografts, and tumor cell lines. We find that mitoses are rare in patient tumors compared with xenografts and cell lines. Contrastingly, CA is more extensive in patient tumors and xenografts (~35–50% cells) than cell lines (~5–15%), although CA declines in patient-derived tumor cells over time. Intratumoral hypoxia may explain elevated CA in vivo because exposure of cultured cells to hypoxia or mimicking hypoxia pharmacologically or genetically increases CA, and HIF-1α and hypoxic gene signature expression correlate with CA and centrosomal gene signature expression in breast tumors. These results highlight the importance of utilizing low-passage-number patient-derived cell lines in studying CA to more faithfully recapitulate in vivo cellular phenotypes
- …
