678 research outputs found

    From the Boltzmann equation to fluid mechanics on a manifold

    Full text link
    We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an arbitrary surface from the Boltzmann equation on the surface

    Simulation of Cavity Flow by the Lattice Boltzmann Method

    Full text link
    A detailed analysis is presented to demonstrate the capabilities of the lattice Boltzmann method. Thorough comparisons with other numerical solutions for the two-dimensional, driven cavity flow show that the lattice Boltzmann method gives accurate results over a wide range of Reynolds numbers. Studies of errors and convergence rates are carried out. Compressibility effects are quantified for different maximum velocities, and parameter ranges are found for stable simulations. The paper's objective is to stimulate further work using this relatively new approach for applied engineering problems in transport phenomena utilizing parallel computers.Comment: Submitted to J. Comput. Physics, late

    Quantum Computation as a Dynamical Process

    Get PDF
    In this paper, we discuss the dynamical issues of quantum computation. We demonstrate that fast wave function oscillations can affect the performance of Shor's quantum algorithm by destroying required quantum interference. We also show that this destructive effect can be routinely avoided by using resonant-pulse techniques. We discuss the dynamics of resonant pulse implementations of quantum logic gates in Ising spin systems. We also discuss the influence of non-resonant excitations. We calculate the range of parameters where undesirable non-resonant effects can be minimized. Finally, we describe the ``2πk2\pi k-method'' which avoids the detrimental deflection of non-resonant qubits.Comment: 13 pages, 1 column, no figure
    corecore