134 research outputs found

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Bayesian molecular clock dating of species divergences in the genomics era

    Get PDF
    It has been five decades since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics, to studying the macroevolutionary process of speciation and extinction, to estimating a timescale for Life on Earth

    Investigating the cost-effectiveness of videotelephone based support for newly diagnosed paediatric oncology patients and their families: design of a randomised controlled trial

    Get PDF
    BACKGROUND: Providing ongoing family centred support is an integral part of childhood cancer care. For families living in regional and remote areas, opportunities to receive specialist support are limited by the availability of health care professionals and accessibility, which is often reduced due to distance, time, cost and transport. The primary aim of this work is to investigate the cost-effectiveness of videotelephony to support regional and remote families returning home for the first time with a child newly diagnosed with cancer METHODS/DESIGN: We will recruit 162 paediatric oncology patients and their families to a single centre randomised controlled trial. Patients from regional and remote areas, classified by Accessibility/Remoteness Index of Australia (ARIA+) greater than 0.2, will be randomised to a videotelephone support intervention or a usual support control group. Metropolitan families (ARIA+ ≤ 0.2) will be recruited as an additional usual support control group. Families allocated to the videotelephone support intervention will have access to usual support plus education, communication, counselling and monitoring with specialist multidisciplinary team members via a videotelephone service for a 12-week period following first discharge home. Families in the usual support control group will receive standard care i.e., specialist multidisciplinary team members provide support either face-to-face during inpatient stays, outpatient clinic visits or home visits, or via telephone for families who live far away from the hospital. The primary outcome measure is parental health related quality of life as measured using the Medical Outcome Survey (MOS) Short Form SF-12 measured at baseline, 4 weeks, 8 weeks and 12 weeks. The secondary outcome measures are: parental informational and emotional support; parental perceived stress, parent reported patient quality of life and parent reported sibling quality of life, parental satisfaction with care, cost of providing improved support, health care utilisation and financial burden for families. DISCUSSION: This investigation will establish the feasibility, acceptability and cost-effectiveness of using videotelephony to improve the clinical and psychosocial support provided to regional and remote paediatric oncology patients and their families

    How repetitive are genomes?

    Get PDF
    BACKGROUND: Genome sequences vary strongly in their repetitiveness and the causes for this are still debated. Here we propose a novel measure of genome repetitiveness, the index of repetitiveness, I(r), which can be computed in time proportional to the length of the sequences analyzed. We apply it to 336 genomes from all three domains of life. RESULTS: The expected value of I(r )is zero for random sequences of any G/C content and greater than zero for sequences with excess repeats. We find that the I(r )of archaea is significantly smaller than that of eubacteria, which in turn is smaller than that of eukaryotes. Mouse chromosomes have a significantly higher I(r )than human chromosomes and within each genome the Y chromosome is most repetitive. A sliding window analysis reveals that the human HOXA cluster and two surrounding genes are characterized by local minima in I(r). A program for calculating the I(r )is freely available at . CONCLUSION: The general measure of DNA repetitiveness proposed in this paper can be efficiently computed on a genomic scale. This reveals a broad spectrum of repetitiveness among diverse genomes which agrees qualitatively with previous studies of repeat content. A sliding window analysis helps to analyze the intragenomic distribution of repeats

    Coverage of whole proteome by structural genomics observed through protein homology modeling database

    Get PDF
    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics

    Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of <it>Ty3/gypsy</it>-like LTR retrotransposons that led to massive genomic expansion in three <it>Helianthus </it>(sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.</p> <p>Results</p> <p>We demonstrate that <it>Ty3/gypsy</it>-like retrotransposons exist as multiple well supported sublineages in both the parental and hybrid derivative species and that the same element sublineage served as the source lineage of proliferation in each hybrid species' genome. This inference is based on patterns of species-specific element numerical abundance within different phylogenetic sublineages as well as through signals of proliferation events present in the distributions of element divergence values. Employing methods to date paralogous sequences within a genome, proliferation events in the hybrid species' genomes are estimated to have occurred approximately 0.5 to 1 million years ago.</p> <p>Conclusion</p> <p>Proliferation of the same retrotransposon major sublineage in each hybrid species indicates that similar dynamics of element derepression and amplification likely occurred in each hybrid taxon during their formation. Temporal estimates of these proliferation events suggest an earlier origin for these hybrid species than previously supposed.</p

    “Microbiota, symbiosis and individuality summer school” meeting report

    Get PDF
    How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on “Microbiota, symbiosis and individuality: conceptual and philosophical issues” (July 2019), which was supported by a European Research Council starting grant project “Immunity, DEvelopment, and the Microbiota” (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of incorporating into meetings experts from other disciplines, such as philosophy and history of science

    Preventing Staphylococcus aureus Sepsis through the Inhibition of Its Agglutination in Blood

    Get PDF
    Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci - coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA) – were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans
    corecore