715 research outputs found
Using hinged ligands to target structurally flexible copper(II) MOFs
First published online 23 Aug 2013Here we report two new flexible MOFs based on a bis-pyrazolylmethane 'hinged' link design that favours the formation of two distinct structural nodes within the resulting 2-D and 3-D structures. The less sterically demanding ligand H₂bcppm affords a 2-D layered MOF, {Cu₂[Cuˡˡ(NO₃)₂(bcppm)₂](DMF)₂}•2DMF (1), constructed from copper(II) paddlewheel and mononuclear octahedral copper(II) nodes. The use of a more sterically encumbered tetramethyl analogue H₂bcpdmpm induces a dramatic twisting of the ligand backbone that yields a 3-D MOF{Cu₄[Cuˡ(bcpdmpm)₂]₂(EtOH)₂(H₂O)₂}(NO₃)₂•12DMF (2) formed from a very similar mix of nodes, specifically copper(II) paddlewheel clusters and mononuclear tetrahedrally coordinated copper(I) centres. Herein we describe the crystal structures, solid-state flexibility, and gas adsorption properties of both materials.Witold M. Bloch, Christian J. Doonan and Christopher J. Sumb
Supramolecular anion recognition in water: synthesis of hydrogen-bonded supramolecular frameworks
The interaction of tetratopic amidinium-containing receptors with terephthalate anions leads to porous framework materials assembled through charge-assisted hydrogen bonds. The frameworks form in good yield within minutes in water at room temperature, but no framework material is obtained if other anions (Cl-, Br-, NO3-, SO42- or isophthalate2-) are used in place of terephthalate. Two forms of the framework can be prepared: one with a connected pore network, and a more dense phase with discrete voids. We demonstrate that these are the kinetic and thermodynamic products, respectively. Either framework can be prepared independently and can be converted to the other form in response to stimuli. Furthermore, the frameworks can be controllably disassembled and reassembled in response to acid/base triggers suggesting that this new class of materials may have applications in the selective encapsulation and release of guests.Mahbod Morshedi, Michael Thomas, Andrew Tarzia, Christian J. Doonan and Nicholas G. Whit
A unique 3D nitrogen-doped carbon composite as high-performance oxygen reduction catalyst
The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe₂O₃) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway.Ramesh Karunagaran, Tran Thanh Tung, Cameron Shearer, Diana Tran, Campbell Coghlan, Christian Doonan, and Dusan Losi
Not the End of the World? Post-Classical Decline and Recovery in Rural Anatolia
Between the foundation of Constantinople as capital of the eastern half of the Roman Empire in 330 CE and its sack by the Fourth Crusade in 1204 CE, the Byzantine Empire underwent a full cycle from political-economic stability, through rural insecurity and agrarian decline, and back to renewed prosperity. These stages plausibly correspond to the phases of over-extension (K), subsequent release (Ω) and recovery (α) of the Adaptive Cycle in Socio-Ecological Systems. Here we track and partly quantify the consequences of those changes in different regions of Anatolia, firstly for rural settlement (via regional archaeological surveys) and secondly for land cover (via pollen analysis). We also examine the impact of climate changes on the agrarian system. While individual histories vary, the archaeological record shows a major demographic decline between ca .650 and ca. 900 CE in central and southwestern Anatolia, which was then a frontier zone between Byzantine and Arab armies. In these regions, and also in northwest Anatolia, century-scale trends in pollen indicate a substantial decline in the production of cereal and tree crops, and a smaller decline in pastoral activity. During the subsequent recovery (α) phase after 900 CE there was strong regional differentiation, with central Anatolia moving to a new economic system based on agro-pastoralism, while lowland areas of northern and western Anatolia returned to the cultivation of commercial crops such as olive trees. The extent of recovery in the agrarian economy was broadly predictable by the magnitude of its preceding decline, but the trajectories of recovery varied between different regions
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B
The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations
Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8
The durability of enzymes in harsh conditions can be enhanced by encapsulation within metal-organic frameworks (MOFs) via a process called biomimetic mineralisation. Herein we show that the surface charge and chemistry of a protein determines its ability to seed MOF growth. We demonstrate that chemical modification of amino acids on the protein surface is an effective method for systematically controlling biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Reaction of surface lysine residues with succinic (or acetic) anhydride facilitates biomimetic mineralisation by increasing the surface negative charge, whereas reaction of surface carboxylate moieties with ethylenediamine affords a more positively charged protein and hinders the process. Moreover, computational studies confirm that the surface electrostatic potential of a protein is a good indicator of its ability to induce biomimetic mineralisation. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralisation of proteins
Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636
- …
