2,055 research outputs found
Iterative adaption of the bidimensional wall of the French T2 wind tunnel around a C5 axisymmetrical model: Infinite variation of the Mach number at zero incidence and a test at increased incidence
The top and bottom two-dimensional walls of the T2 wind tunnel are adapted through an iterative process. The adaptation calculation takes into account the flow three-dimensionally. This method makes it possible to start with any shape of walls. The tests were performed with a C5 axisymmetric model at ambient temperature. Comparisons are made with the results of a true three-dimensional adaptation
Learning and generation of long-range correlated sequences
We study the capability to learn and to generate long-range, power-law
correlated sequences by a fully connected asymmetric network. The focus is set
on the ability of neural networks to extract statistical features from a
sequence. We demonstrate that the average power-law behavior is learnable,
namely, the sequence generated by the trained network obeys the same
statistical behavior. The interplay between a correlated weight matrix and the
sequence generated by such a network is explored. A weight matrix with a
power-law correlation function along the vertical direction, gives rise to a
sequence with a similar statistical behavior.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Local Guarantees in Graph Cuts and Clustering
Correlation Clustering is an elegant model that captures fundamental graph
cut problems such as Min Cut, Multiway Cut, and Multicut, extensively
studied in combinatorial optimization. Here, we are given a graph with edges
labeled or and the goal is to produce a clustering that agrees with the
labels as much as possible: edges within clusters and edges across
clusters. The classical approach towards Correlation Clustering (and other
graph cut problems) is to optimize a global objective. We depart from this and
study local objectives: minimizing the maximum number of disagreements for
edges incident on a single node, and the analogous max min agreements
objective. This naturally gives rise to a family of basic min-max graph cut
problems. A prototypical representative is Min Max Cut: find an cut
minimizing the largest number of cut edges incident on any node. We present the
following results: an -approximation for the problem of
minimizing the maximum total weight of disagreement edges incident on any node
(thus providing the first known approximation for the above family of min-max
graph cut problems), a remarkably simple -approximation for minimizing
local disagreements in complete graphs (improving upon the previous best known
approximation of ), and a -approximation for
maximizing the minimum total weight of agreement edges incident on any node,
hence improving upon the -approximation that follows from
the study of approximate pure Nash equilibria in cut and party affiliation
games
Multi-Player and Multi-Choice Quantum Game
We investigate a multi-player and multi-choice quantum game. We start from
two-player and two-choice game and the result is better than its classical
version. Then we extend it to N-player and N-choice cases. In the quantum
domain, we provide a strategy with which players can always avoid the worst
outcome. Also, by changing the value of the parameter of the initial state, the
probabilities for players to obtain the best payoff will be much higher that in
its classical version.Comment: 4 pages, 1 figur
The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number of vertices
N. The analysis is carried out by mapping the history of the search process
onto an out-of-equilibrium (multi-dimensional) surface growth problem. The
growth exponent of the average running time is quantitatively predicted, in
agreement with simulations.Comment: 5 figure
Recommended from our members
Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults
Attachment in the context of intimate pair bonds is most frequently studied in terms of the universal strategy to draw near, or away, from significant others at moments of personal distress. However, important interindividual differences in the quality of attachment exist, usually captured through secure versus insecure – anxious and/or avoidant – attachment orientations. Since Bowlby’s pioneering writings on the theory of attachment, it has been assumed that attachment orientations are influenced by both genetic and social factors – what we would today describe and measure as gene by environment interaction mediated by epigenetic DNA modification – but research in humans on this topic remains extremely limited. We for the first time examined relations between intra-individual differences in attachment and epigenetic modification of the oxytocin receptor (OXTR) and glucocorticoid receptor (NR3C1) gene promoter in 109 young adult human participants. Our results revealed that attachment avoidance was significantly and specifically associated with increased OXTR and NR3C1 promoter methylation. These findings offer first tentative clues on the possible etiology of attachment avoidance in humans by showing epigenetic modification in genes related to both social stress regulation and HPA axis functioning
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
Motivation: Biomarker discovery from high-dimensional data is a crucial
problem with enormous applications in biology and medicine. It is also
extremely challenging from a statistical viewpoint, but surprisingly few
studies have investigated the relative strengths and weaknesses of the plethora
of existing feature selection methods. Methods: We compare 32 feature selection
methods on 4 public gene expression datasets for breast cancer prognosis, in
terms of predictive performance, stability and functional interpretability of
the signatures they produce. Results: We observe that the feature selection
method has a significant influence on the accuracy, stability and
interpretability of signatures. Simple filter methods generally outperform more
complex embedded or wrapper methods, and ensemble feature selection has
generally no positive effect. Overall a simple Student's t-test seems to
provide the best results. Availability: Code and data are publicly available at
http://cbio.ensmp.fr/~ahaury/
Fast branching algorithm for Cluster Vertex Deletion
In the family of clustering problems, we are given a set of objects (vertices
of the graph), together with some observed pairwise similarities (edges). The
goal is to identify clusters of similar objects by slightly modifying the graph
to obtain a cluster graph (disjoint union of cliques). Hueffner et al. [Theory
Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex
Deletion, where the allowed modification is vertex deletion, and presented an
elegant O(2^k * k^9 + n * m)-time fixed-parameter algorithm, parameterized by
the solution size. In our work, we pick up this line of research and present an
O(1.9102^k * (n + m))-time branching algorithm
Mannan-binding lectin is involved in the protection against renal ischemia/ reperfusion injury by dietary restriction
Preoperative fasting and dietary restriction offer robust protection against renal ischemia/ reperfusion injury (I/RI) in mice.We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different. Copyright
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
- …
