3,553 research outputs found

    The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

    Full text link
    Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published in PRL, e-mail comments to [email protected]

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&

    Quantum frequency estimation with trapped ions and atoms

    Full text link
    We discuss strategies for quantum enhanced estimation of atomic transition frequencies with ions stored in Paul traps or neutral atoms trapped in optical lattices. We show that only marginal quantum improvements can be achieved using standard Ramsey interferometry in the presence of collective dephasing, which is the major source of noise in relevant experimental setups. We therefore analyze methods based on decoherence free subspaces and prove that quantum enhancement can readily be achieved even in the case of significantly imperfect state preparation and faulty detections.Comment: 5 pages + 6 pages appendices; published versio

    Phonon Life-times from first principles self consistent lattice dynamics

    Full text link
    Phonon lifetime calculations from first principles usually rely on time consuming molecular dynamics calculations, or density functional perturbation theory (DFPT) where the zero temperature crystal structure is assumed to be dynamically stable. Here a new and effective method for calculating phonon lifetimes from first principles is presented, not limited to crystal structures stable at 0 K, and potentially much more effective than most corresponding molecular dynamics calculations. The method is based on the recently developed self consistent lattice dynamical method and is here tested by calculating the bcc phase phonon lifetimes of Li, Na, Ti and Zr, as representative examples.Comment: 4 pages, 4 figur

    Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO_2 molecules

    Get PDF
    We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO2, using photoelectron-O+–CO+ coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90° to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree–Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion

    Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    Full text link
    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.Comment: 6 pages, 5 figure

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    Field-Induced Two-Step Phase Transitions in the Singlet Ground State Triangular Antiferromagnet CsFeBr3_3

    Full text link
    The ground state of the stacked triangular antiferromagnet CsFeBr3_3 is a spin singlet due to the large single ion anisotropy D(Sz)2D(S^z)^2. The field-induced magnetic ordering in this compound was investigated by the magnetic susceptibility, the magnetization process and specific heat measurements for an external field parallel to the cc-axis. Unexpectedly, two phase transitions were observed in the magnetic field HH higher than 3 T. The phase diagram for temperature versus magnetic field was obtained. The mechanism leading to the successive phase transitions is discussed.Comment: 8 pages, 9 figures, 10 eps files, jpsj styl

    Quantum computation in optical lattices via global laser addressing

    Full text link
    A scheme for globally addressing a quantum computer is presented along with its realisation in an optical lattice setup of one, two or three dimensions. The required resources are mainly those necessary for performing quantum simulations of spin systems with optical lattices, circumventing the necessity for single qubit addressing. We present the control procedures, in terms of laser manipulations, required to realise universal quantum computation. Error avoidance with the help of the quantum Zeno effect is presented and a scheme for globally addressed error correction is given. The latter does not require measurements during the computation, facilitating its experimental implementation. As an illustrative example, the pulse sequence for the factorisation of the number fifteen is given.Comment: 11 pages, 10 figures, REVTEX. Initialisation and measurement procedures are adde
    corecore