128 research outputs found

    Protecting Trade Secrets Through Copyright

    Get PDF

    Liquid marbles: principles and applications

    Get PDF
    The ability of particles to adhere to a fluid–fluid interface can stabilize the formation of an emulsion. When the encapsulated fluid is a liquid and the fluid in which it is immersed is air, the object formed is called a “Liquid Marble”. Here we discuss how liquid marbles can be created, their fundamental properties and their transport and potential uses. We show how they arise naturally as an insect waste disposal system, from impact of droplets on powders and on hydrophobic soil, and in the mixing of particulate containing liquids. Our principal aim is to review research on macroscopic single marbles and their potential uses in sensors and droplet microfluidics. However, we also illustrate the similarity between liquid marbles, Pickering emulsions and “Dry Water”, and the potential application of assemblies of liquid marbles within cosmetics and pharmaceutical formulations. Finally, we discuss how modifying the surface structure of particles and providing heterogeneous surface chemistry on particles (e.g. Janus particles) might provide new types of liquid marbles and applications

    Protecting Trade Secrets Through Copyright

    Full text link

    An introduction to superhydrophobicity

    Get PDF
    This paper is derived from a training session prepared for COST P21. It is intended as an introduction to superhydrophobicity to scientists who may not work in this area of physics or to students. Superhydrophobicity is an effect where roughness and hydrophobicity combine to generate unusually hydrophobic surfaces, causing water to bounce and roll off as if it were mercury and is used by plants and animals to repel water, stay clean and sometimes even to breathe. The effect is also known as The Lotus Effect® and Ultrahydrophobicity. In this paper we introduce many of the theories used, some of the methods used to generate surfaces and then describe some of the implications of the effect

    Cellular association and assembly of a multistage delivery system

    Get PDF
    The realization that blood-borne delivery systems must overcome a multiplicity of biological barriers has led to the fabrication of a multistage delivery system (MDS) designed to temporally release successive stages of particles or agents to conquer sequential barriers, with the goal of enhancing delivery of therapeutic and diagnostic agents to the target site. In its simplest form, the MDS comprises stage-one porous silicon microparticles that function as carriers of second-stage nanoparticles. Cellular uptake of nontargeted discoidal silicon microparticles by macrophages is confirmed by electron and atomic force microscopy (AFM). Using superparamagnetic iron oxide nanoparticles (SPIONs) as a model of secondary nanoparticles, successful loading of the porous matrix of silicon microparticles is achieved, and retention of the nanoparticles is enhanced by aminosilylation of the loaded microparticles with 3-aminopropyltriethoxysilane. The impact of silane concentration and reaction time on the nature of the silane polymer on porous silicon is investigated by AFM and X-ray photoelectron microscopy. Tissue samples from mice intravenously administered the MDS support co-localization of silicon microparticles and SPIONs across various tissues with enhanced SPION release in spleen, compared to liver and lungs, and enhanced retention of SPIONs following silane capping of the MDS. Phantom models of the SPION-loaded MDS display negative contrast in magnetic resonance images. In addition to forming a cap over the silicon pores, the silane polymer provides free amines for antibody conjugation to the microparticles, with both VEGFR-2- and PECAM-specific antibodies leading to enhanced endothelial association. This study demonstrates the assembly and cellular association of a multiparticle delivery system that is biomolecularly targeted and has potential for applications in biological imaging.</p

    Controlled motion of electrically neutral microparticles by pulsed direct current

    Get PDF
    A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directionality of microparticles can be controlled and their speed can be easily regulated by adjusting pulsed current density. We find that the movement may arise from the configuration of electrical domains which generates a driving force which exceeds the force of gravity and viscous friction. All of these features are of potential benefit in separating the particles of nearly equal density but distinctly different electrical conductivities, and also offer considerable promise for the precise and selective positioning of micro-objects or the controlled motion of minute quantities of surrounding fluids

    Exocytosis of mesoporous silica nanoparticles from mammalian cells: from asymmetric cell-to-cell transfer to protein harvesting

    Get PDF
    The exocytosis of mesoporous silica nanoparticles (MSNs) from mammalian cells is demonstrated for the first time. The differences in the degree of exocytosis of MSNs between healthy and cancer cells are shown to be responsible for the asymmetric transfer of the particles between both cell types. The exo­cytosis of highly adsorbent magnetic MSNs proves to be useful as a means for harvesting biomolecules from living cells

    Interprofessional Team Immersion: Collaborative and Patient Centered Care

    No full text
    This is a presentation by Juwuan Phoprida, Kyara Dorvee, and Heather Watson based on their experience in the IPTI program offered in Spring of 2024.https://dune.une.edu/caiepspring2024/1013/thumbnail.jp
    corecore