80 research outputs found

    Single-nucleotide variant calling in single-cell sequencing data with Monopogen

    Get PDF
    Single-cell omics technologies enable molecular characterization of diverse cell types and states, but how the resulting transcriptional and epigenetic profiles depend on the cell\u27s genetic background remains understudied. We describe Monopogen, a computational tool to detect single-nucleotide variants (SNVs) from single-cell sequencing data. Monopogen leverages linkage disequilibrium from external reference panels to identify germline SNVs and detects putative somatic SNVs using allele cosegregating patterns at the cell population level. It can identify 100 K to 3 M germline SNVs achieving a genotyping accuracy of 95%, together with hundreds of putative somatic SNVs. Monopogen-derived genotypes enable global and local ancestry inference and identification of admixed samples. It identifies variants associated with cardiomyocyte metabolic levels and epigenomic programs. It also improves putative somatic SNV detection that enables clonal lineage tracing in primary human clonal hematopoiesis. Monopogen brings together population genetics, cell lineage tracing and single-cell omics to uncover genetic determinants of cellular processes

    Blinatumomab Maintenance After Allogeneic Hematopoietic Cell Transplantation for B-Lineage Acute Lymphoblastic Leukemia

    Get PDF
    Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions

    Sensei: How Many Samples To Tell a Change in Cell Type Abundance?

    Get PDF
    Cellular heterogeneity underlies cancer evolution and metastasis. Advances in single-cell technologies such as single-cell RNA sequencing and mass cytometry have enabled interrogation of cell type-specific expression profiles and abundance across heterogeneous cancer samples obtained from clinical trials and preclinical studies. However, challenges remain in determining sample sizes needed for ascertaining changes in cell type abundances in a controlled study. To address this statistical challenge, we have developed a new approach, named Sensei, to determine the number of samples and the number of cells that are required to ascertain such changes between two groups of samples in single-cell studies. Sensei expands the t-test and models the cell abundances using a beta-binomial distribution. We evaluate the mathematical accuracy of Sensei and provide practical guidelines on over 20 cell types in over 30 cancer types based on knowledge acquired from the cancer cell atlas (TCGA) and prior single-cell studies. We provide a web application to enable user-friendly study design via https://kchen-lab.github.io/sensei/table_beta.html

    MEDALT: Single-cell copy number lineage tracing enabling gene discovery

    Get PDF
    We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT

    Novornabreak: Local Assembly for Novel Splice Junction and Fusion Transcript Detection from RNA-Seq Data

    Get PDF
    We present novoRNABreak, a unified framework for cancer specific novel splice junction and fusion transcript detection in RNA-seq data obtained from human cancer samples. novoRNABreak is based on a local assembly model, which offers a tradeoff between the alignment-based and de novo whole transcriptome assembly (WTA) methods. This approach is accurate and sensitive in assembling novel junctions that are difficult to directly align or have multiple alignments. Additionally, it is more efficient due to the strategy that focuses on junctions rather than full length transcripts. The performance of novoRNABreak is demonstrated by a comprehensive set of experiments using synthetic data generated based on genome reference, as well as real RNA-seq data from breast cancer and prostate cancer samples. The results show that our tool has a better performance by fully utilizing unmapped reads and precisely identifying the junctions where short reads or small exons have multiple alignments. novoRNABreak is a fully-fledged program available on GitHub (https://github.com/KChen-lab/novoRNABreak)

    Systematic Decomposition of Sequence Determinants Governing CRISPR/Cas9 Specificity

    Get PDF
    The specificity of CRISPR/Cas9 genome editing is largely determined by the sequences of guide RNA (gRNA) and the targeted DNA, yet the sequence-dependent rules underlying off-target effects are not fully understood. To systematically explore the sequence determinants governing CRISPR/Cas9 specificity, here we describe a dual-target system to measure the relative cleavage rate between off- and on-target sequences (off-on ratios) of 1902 gRNAs on 13,314 synthetic target sequences, and reveal a set of sequence rules involving 2 factors in off-targeting: 1) a guide-intrinsic mismatch tolerance (GMT) independent of the mismatch context; 2) an epistasis-like combinatorial effect of multiple mismatches, which are associated with the free-energy landscape in R-loop formation and are explainable by a multi-state kinetic model. These sequence rules lead to the development of MOFF, a model-based predictor of Cas9-mediated off-target effects. Moreover, the epistasis-like combinatorial effect suggests a strategy of allele-specific genome editing using mismatched guides. With the aid of MOFF prediction, this strategy significantly improves the selectivity and expands the application domain of Cas9-based allele-specific editing, as tested in a high-throughput allele-editing screen on 18 cancer hotspot mutations

    Bi-Order Multimodal Integration of Single-Cell Data

    Get PDF
    Integration of single-cell multiomics profiles generated by different single-cell technologies from the same biological sample is still challenging. Previous approaches based on shared features have only provided approximate solutions. Here, we present a novel mathematical solution named bi-order canonical correlation analysis (bi-CCA), which extends the widely used CCA approach to iteratively align the rows and the columns between data matrices. Bi-CCA is generally applicable to combinations of any two single-cell modalities. Validations using co-assayed ground truth data and application to a CAR-NK study and a fetal muscle atlas demonstrate its capability in generating accurate multimodal co-embeddings and discovering cellular identity

    Single-Nucleotide Variant Calling In Single-Cell Sequencing Data With Monopogen

    Get PDF
    Single-cell omics technologies enable molecular characterization of diverse cell types and states, but how the resulting transcriptional and epigenetic profiles depend on the cell\u27s genetic background remains understudied. We describe Monopogen, a computational tool to detect single-nucleotide variants (SNVs) from single-cell sequencing data. Monopogen leverages linkage disequilibrium from external reference panels to identify germline SNVs and detects putative somatic SNVs using allele cosegregating patterns at the cell population level. It can identify 100 K to 3 M germline SNVs achieving a genotyping accuracy of 95%, together with hundreds of putative somatic SNVs. Monopogen-derived genotypes enable global and local ancestry inference and identification of admixed samples. It identifies variants associated with cardiomyocyte metabolic levels and epigenomic programs. It also improves putative somatic SNV detection that enables clonal lineage tracing in primary human clonal hematopoiesis. Monopogen brings together population genetics, cell lineage tracing and single-cell omics to uncover genetic determinants of cellular processes

    Direct CD32 T-cell cytotoxicity: implications for breast cancer prognosis and treatment

    Get PDF
    The FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked toCD28/ζ chain intracellular moiety (CD32-CR). Transduced T cells recognized three breast cancer (BC) and one colon cancer cell line among 15 tested in the absence of targeting antibodies. Sensitive BC cell conjugation with CD32-CR T cells induced CD32 polarization and down-regulation, CD107a release, mutual elimination, and proinflammatory cytokine production unaffected by human IgGs but enhanced by cetuximab. CD32-CR T cells protected immunodeficient mice from subcutaneous growth of MDA-MB-468 BC cells. RNAseq analysis identified a 42 gene fingerprint predicting BC cell sensitivity and favorable outcomes in advanced BC. ICAM1 was a major regulator of CD32-CR T cell–mediated cytotoxicity. CD32-CR T cells may help identify cell surface CD32 ligand(s) and novel prognostically relevant transcriptomic signatures and develop innovative BC treatments
    corecore