2,061 research outputs found
Robust mechanism design and dominant strategy voting rules
We develop an analysis of voting rules that is robust in the sense that we do not make any assumption regarding voters’ knowledge about each other. In dominant strategy voting rules, voters’ behavior can be predicted uniquely without making any such assumption. However, on full domains, the only dominant strategy voting rules are random dictatorships. We show that the designer of a voting rule can achieve Pareto improvements over random dictatorship by choosing rules in which voters’ behavior can depend on their beliefs. The Pareto improvement is achieved for all possible beliefs. The mechanism that we use to demonstrate this result is simple and intuitive, and the Pareto improvement result extends to all equilibria of the mechanism that satisfy a mild refinement. We also show that the result only holds for voters’ interim expected utilities, not for their ex post expected utilities.robust mechanism design; dominant strategies; voting; Gibbard-Satterthwaite theorem
Effectiveness of Compression Garments on Selected Physiological, Perceptual and Performance Measures While Traversing Austere Conditions at Altitude: A Pilot Study
Robust mechanism design and dominant strategy voting rules
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107361/1/TE1111.pd
Response of river-dominated delta channel networks to permanent changes in river discharge
Using numerical experiments, we investigate how river-dominated delta channel networks are likely to respond to changes in river discharge predicted to occur over the next century as a result of environmental change. Our results show for a change in discharge up to 60% of the initial value, a decrease results in distributary abandonment in the delta, whereas an increase does not significantly affect the network. However, an increase in discharge beyond a threshold of 60% results in channel creation and an increase in the density of the distributary network. This behavior is predicted by an analysis of an individual bifurcation subject to asymmetric water surface slopes in the bifurcate arms. Given that discharge in most river basins will change by less than 50% in the next century, our results suggest that deltas in areas of increased drought will be more likely to experience significant rearrangement of the delta channel network. Copyright 2010 by the American Geophysical Union
Functional Movement Profiles Of Police Officers From A Rural U.S. Based Law Enforcement Agency
Recommended from our members
Predictable climate impacts of the decadal changes in the ocean in the 1990s
During the 1990s there was a major change in the state of the world's oceans. In particular, the North Atlantic underwent a rapid warming, with sea surface temperatures (SSTs) in the subpolar gyre region increasing by 1°C in just a few years. Associated with the changes in SST patterns were changes in the surface climate, in particular, a tendency for warm and dry conditions over areas of North America in all seasons, and warm springs and wet summers over areas of Europe. Here, the extent to which a climate prediction system initialized using observations of the ocean state is able to capture the observed changes in seasonal mean surface climate is investigated. Rather than examining predictions of the mid-1990s North Atlantic warming event itself, this study compares hindcasts started before and after the warming, relative to hindcasts that do not assimilate information. It is demonstrated that the hindcasts capture many aspects of the observed changes in seasonal mean surface climate, especially in North, South, and Central America and in Europe. Furthermore, the prediction system retains skill beyond the first year. Finally, it is shown that, in addition to memory of Atlantic SSTs, successfully predicting Pacific SSTs was likely important for the hindcasts to predict surface climate over North America
Mechanisms of Heat Content and Thermocline Change in the Subtropical and Subpolar North Atlantic
Abstract
In the North Atlantic, there are pronounced gyre-scale changes in ocean heat content on interannual-to-decadal time scales, which are associated with changes in both sea surface temperature and thermocline thickness; the subtropics are often warm with a thick thermocline when the subpolar gyre is cool with a thin thermocline, and vice versa. This climate variability is investigated using a semidiagnostic dynamical analysis of historical temperature and salinity data from 1962 to 2011 together with idealized isopycnic model experiments. On time scales of typically 5 yr, the tendencies in upper-ocean heat content are not simply explained by the area-averaged atmospheric forcing for each gyre but instead dominated by heat convergences associated with the meridional overturning circulation. In the subtropics, the most pronounced warming events are associated with an increased influx of tropical heat driven by stronger trade winds. In the subpolar gyre, the warming and cooling events are associated with changes in western boundary density, where increasing Labrador Sea density leads to an enhanced overturning and an influx of subtropical heat. Thus, upper-ocean heat content anomalies are formed in a different manner in the subtropical and subpolar gyres, with different components of the meridional overturning circulation probably excited by the local imprint of atmospheric forcing.</jats:p
Recommended from our members
The interpretation and use of biases in decadal climate predictions
Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts.
The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities
- …
