79 research outputs found
Recommended from our members
Skilful seasonal prediction of winter gas demand
In Britain, residential properties are predominantly heated using gas central heating systems. Ensuring a reliable supply of gas is therefore vital in protecting vulnerable sections of society from the adverse effects of cold weather. Ahead of the winter, the grid operator makes a prediction of gas demand to better anticipate possible conditions. Seasonal weather forecasts are not currently used to inform this demand prediction. Here we assess whether seasonal weather forecasts can skilfully predict the weather-driven component of both winter mean gas demand and the number of extreme gas demand days over the winter period. We find that both the mean and the number of extreme days are predicted with some skill from early November using seasonal forecasts of the large-scale atmospheric circulation (r > 0.5). Although temperature is most strongly correlated with gas demand, the more skilful prediction of the atmospheric circulation means it is a better predictor of demand. If seasonal weather forecasts are incorporated into pre-winter gas demand planning, they could help improve the security of gas supplies and reduce the impacts associated with extreme demand events
Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
BACKGROUND:
MUC2 mucin
produced by intestinal goblet cells is the major component of the intestinal
mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted
goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we
used random mutagenesis to produce two murine models of inflammatory bowel disease,
characterised the basis and nature of the inflammation in these mice, and compared the
pathology with human ulcerative colitis.
METHODS AND FINDINGS:
By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing
missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both
strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis
scores versus wild-type mice, p , 0.01) and chronic diarrhoea. Monitoring over 300 mice of
each strain demonstrated that 25% and 40% of each strain, respectively, developed severe
clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored
mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced
by a luminal toxin. Enhanced local production of IL-1b, TNF-a, and IFN-c was seen in the distal
colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric
lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2
cytokines (IFN-c, TNF-a, and IL-13). This pathology was accompanied by accumulation of the
Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER)
stress in goblet cells, activation of the unfolded protein response, and altered intestinal
expression of genes involved in ER stress, inflammation, apoptosis, and wound repair.
Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant
Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate
similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with
ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue.
Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it
does not ascertain the genetic or environmental drivers of ER stress in human colitis.
CONCLUSIONS:
Characterisation of the mouse models we created and comparison with human disease
suggest that ER stress-related mucin depletion could be a fundamental component of the
pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related
pathology and relevant environmental epidemiology are warranted.
The Editors’ Summary of this article follows the references
TRAINING LOAD PRIOR TO INJURY IN PROFESSIONAL RUGBY LEAGUE PLAYERS: ANALYSING INJURY RISK WITH MACHINE LEARNING
This study explores the application of Global Positioning System tracking data from field training sessions and supervised machine learning algorithms for predicting injury risk of players across a single National Rugby League season. Previous work across a range of sporting codes has demonstrated associations between training loads and increased incidence of injury in professional athletes. Most of the work conducted has applied a reductionist approach, identifying training load characteristics as risk factors using generalised models to show population trends. This study demonstrates promising results by applying processing techniques and machine learning algorithms to analyse the injury risk associated with complex training load patterns. The accuracy of the algorithms are investigated along with the importance of training load predictors and data window sizes
The Allen Telescope Array
The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade
Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere
Model simulations presented in this paper suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide and chlorine nitrate near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km
Recommended from our members
Decadal prediction for the European energy sector
The timescale of decadal climate predictions, from a year‐ahead up to a decade, is an important planning horizon for stakeholders in the energy sector. With power systems transitioning towards a greater share of renewable energy sources, these systems become more sensitive to the variability of weather and climate, thus necessitating the provision of long‐range climate predictions to ensure effective planning and operation. As decadal predictions sample both the internal variability of the climate and the externally forced response, these forecasts potentially provide useful information for the upcoming decade. Here, we show for the first time that it is possible to make skillful decadal predictions for a range of energy sector relevant climate variables over the European region. We apply post‐processing techniques and identify skill in certain regions during both summer and winter for temperature, solar irradiance, and precipitation. We also show significant skill for 850 hPa zonal wind speed and the North Atlantic Oscillation during the extended winter period (October–March). We demonstrate how these forecasts can be used for important energy indicators, such as offshore wind capacity factors, comparing the skill of direct model output (using forecast variables directly) and pattern‐based approaches (e.g., using the NAO index). We find significant skill for predictions of modeled European energy variables, including Northern European offshore wind capacity factors ( r = 0.73), UK electricity demand ( r = 0.84), solar photovoltaic capacity factors in Spain ( r = 0.63), and precipitation in Scandinavia ( r = 0.64). Our results highlight the potential for skilful prediction of energy‐sector relevant quantities on decadal timescales. This could benefit both the planning and operation of the future energy system
Variability and quasi-decadal changes in the methane budget overthe period 2000–2012
Following the recent Global Carbon Project (GCP)
synthesis of the decadal methane (CH4/ budget over 2000–
2012 (Saunois et al., 2016), we analyse here the same dataset
with a focus on quasi-decadal and inter-annual variability in
CH4 emissions. The GCP dataset integrates results from topdown
studies (exploiting atmospheric observations within an
atmospheric inverse-modelling framework) and bottom-up
models (including process-based models for estimating land
surface emissions and atmospheric chemistry), inventories of
anthropogenic emissions, and data-driven approaches.The annual global methane emissions from top-down studies,
which by construction match the observed methane
growth rate within their uncertainties, all show an increase in
total methane emissions over the period 2000–2012, but this
increase is not linear over the 13 years. Despite differences
between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total
methane emissions over the period 2000–2006, during
the plateau of atmospheric methane mole fractions, and also
over the period 2008–2012, during the renewed atmospheric
methane increase. However, the top-down ensemble mean
produces an emission shift between 2006 and 2008, leading
to 22 [16–32] Tg CH4 yr1 higher methane emissions
over the period 2008–2012 compared to 2002–2006. This
emission increase mostly originated from the tropics, with
a smaller contribution from mid-latitudes and no significant
change from boreal regions.
The regional contributions remain uncertain in top-down
studies. Tropical South America and South and East Asia
seem to contribute the most to the emission increase in the
tropics. However, these two regions have only limited atmospheric
measurements and remain therefore poorly constrained.
The sectorial partitioning of this emission increase between
the periods 2002–2006 and 2008–2012 differs from
one atmospheric inversion study to another. However, all topdown
studies suggest smaller changes in fossil fuel emissions
(from oil, gas, and coal industries) compared to the
mean of the bottom-up inventories included in this study.
This difference is partly driven by a smaller emission change
in China from the top-down studies compared to the estimate
in the Emission Database for Global Atmospheric Research
(EDGARv4.2) inventory, which should be revised to smaller
values in a near future. We apply isotopic signatures to the
emission changes estimated for individual studies based on
five emission sectors and find that for six individual top-down
studies (out of eight) the average isotopic signature of the
emission changes is not consistent with the observed change
in atmospheric 13CH4. However, the partitioning in emission
change derived from the ensemble mean is consistent with
this isotopic constraint. At the global scale, the top-down ensemble
mean suggests that the dominant contribution to the
resumed atmospheric CH4 growth after 2006 comes from microbial
sources (more from agriculture and waste sectors than
from natural wetlands), with an uncertain but smaller contribution
from fossil CH4 emissions. In addition, a decrease in
biomass burning emissions (in agreement with the biomass
burning emission databases) makes the balance of sources
consistent with atmospheric 13CH4 observations.
In most of the top-down studies included here, OH concentrations
are considered constant over the years (seasonal variations
but without any inter-annual variability). As a result,
the methane loss (in particular through OH oxidation) varies
mainly through the change in methane concentrations and not
its oxidants. For these reasons, changes in the methane loss
could not be properly investigated in this study, although it
may play a significant role in the recent atmospheric methane
changes as briefly discussed at the end of the paper.Published11135–111616A. Geochimica per l'ambienteJCR Journa
The global methane budget 2000–2017
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).
For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.
Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning
- …
