1,666 research outputs found
Recommended from our members
Climate-driven regime shifts in a mangrove-salt marsh ecotone over the past 250 years.
Climate change is driving the tropicalization of temperate ecosystems by shifting the range edges of numerous species poleward. Over the past few decades, mangroves have rapidly displaced salt marshes near multiple poleward mangrove range limits, including in northeast Florida. It is uncertain whether such mangrove expansions are due to anthropogenic climate change or natural climate variability. We combined historical accounts from books, personal journals, scientific articles, logbooks, photographs, and maps with climate data to show that the current ecotone between mangroves and salt marshes in northeast Florida has shifted between mangrove and salt marsh dominance at least 6 times between the late 1700s and 2017 due to decadal-scale fluctuations in the frequency and intensity of extreme cold events. Model projections of daily minimum temperature from 2000 through 2100 indicate an increase in annual minimum temperature by 0.5 °C/decade. Thus, although recent mangrove range expansion should indeed be placed into a broader historical context of an oscillating system, climate projections suggest that the recent trend may represent a more permanent regime shift due to the effects of climate change
2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications
2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step toward understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased threefold in cells starved of nitrogen but returned to levels consistent with vegetative cells within 2 weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosynthesis in N. punctiforme
Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis
We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%)
An Intercomparison of Tropospheric Ozone Retrievals Derived from Two Aura Instruments and Measurements in Western North America in 2006
Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectoryenhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream
Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy
Photonic technologies offer numerous advantages for astronomical instruments
such as spectrographs and interferometers owing to their small footprints and
diverse range of functionalities. Operating at the diffraction-limit, it is
notoriously difficult to efficiently couple such devices directly with large
telescopes. We demonstrate that with careful control of both the non-ideal
pupil geometry of a telescope and residual wavefront errors, efficient coupling
with single-mode devices can indeed be realised. A fibre injection was built
within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument.
Light was coupled into a single-mode fibre operating in the near-IR (J-H bands)
which was downstream of the extreme adaptive optics system and the pupil
apodising optics. A coupling efficiency of 86% of the theoretical maximum limit
was achieved at 1550 nm for a diffraction-limited beam in the laboratory, and
was linearly correlated with Strehl ratio. The coupling efficiency was constant
to within <30% in the range 1250-1600 nm. Preliminary on-sky data with a Strehl
ratio of 60% in the H-band produced a coupling efficiency into a single-mode
fibre of ~50%, consistent with expectations. The coupling was >40% for 84% of
the time and >50% for 41% of the time. The laboratory results allow us to
forecast that extreme adaptive optics levels of correction (Strehl ratio >90%
in H-band) would allow coupling of >67% (of the order of coupling to multimode
fibres currently). For Strehl ratios <20%, few-port photonic lanterns become a
superior choice but the signal-to-noise must be considered. These results
illustrate a clear path to efficient on-sky coupling into a single-mode fibre,
which could be used to realise modal-noise-free radial velocity machines,
very-long-baseline optical/near-IR interferometers and/or simply exploit
photonic technologies in future instrument design.Comment: 15 pages, 16 figures, 1 table, published in A&
Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants
Hopanes preserved in both modern and ancient sediments are recognized as the molecular fossils of bacteriohopanepolyols, pentacyclic hopanoid lipids. Based on the phylogenetic distribution of hopanoid production by extant bacteria, hopanes have been used as indicators of specific bacterial groups and/or their metabolisms. However, our ability to interpret them ultimately depends on understanding the physiological roles of hopanoids in modern bacteria. Toward this end, we set out to identify genes required for hopanoid biosynthesis in the anoxygenic phototroph Rhodopseudomonas palustris TIE-1 to enable selective control of hopanoid production. We attempted to delete 17 genes within a putative hopanoid biosynthetic gene cluster to determine their role, if any, in hopanoid biosynthesis. Two genes, hpnH and hpnG, are required to produce both bacteriohopanetetrol and aminobacteriohopanetriol, whereas a third gene, hpnO, is required only for aminobacteriohopanetriol production. None of the genes in this cluster are required to exclusively synthesize bacteriohopanetetrol, indicating that at least one other hopanoid biosynthesis gene is located elsewhere on the chromosome. Physiological studies with the different deletion mutants demonstrated that unmethylated and C_30 hopanoids are sufficient to maintain cytoplasmic but not outer membrane integrity. These results imply that hopanoid modifications, including methylation of the A-ring and the addition of a polar head group, may have biologic functions beyond playing a role in membrane permeability
The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1
Rhodopseudomonas palustris TIE-1 is a Gram-negative bacterium that produces structurally diverse hopanoid lipids that are similar to eukaryotic steroids. Its genome encodes several homologues to proteins involved in eukaryotic steroid trafficking. In this study, we explored the possibility that two of these proteins are involved
in intracellular hopanoid transport. R. palustris has a sophisticated membrane system comprising outer, cytoplasmic, and inner cytoplasmic membranes. It also divides asymmetrically, producing a mother and swarmer cell. We deleted genes encoding two putative hopanoid transporters that belong to the resistance–nodulation–
cell division superfamily. Phenotypic analyses revealed that
one of these putative transporters (HpnN) is essential for the movement of hopanoids from the cytoplasmic to the outer membrane, whereas the other (Rpal_4267) plays a minor role. C30 hopanoids, such as diploptene, are evenly distributed between mother and swarmer cells, whereas hpnN is required for the C35 hopanoid, bacteriohopanetetrol, to remain localized to the mother cell type. Mutant cells lacking HpnN grow like the WT at 30 °C but slower at 38 °C. Following cell division at 38 °C, the ΔhpnN cells remain
connected by their cell wall, forming long filaments. This phenotype may be attributed to hopanoid mislocalization because a double mutant deficient in both hopanoid biosynthesis and transport does not form filaments. However, the lack of hopanoids severely compromises cell growth at higher temperatures more generally. Because hopanoid mutants only manifest a strong phenotype under
certain conditions, R. palustris is an attractive model organism in which to study their transport and function
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
Distribution and conservation status of the orang-utan (Pongo spp.) on Borneo and Sumatra: how many remain?
In recognition of the fact that orang-utans (Pongo spp.) are severely threatened, a meeting of orang-utan experts and conservationists, representatives of national and regional governmental and non-governmental organizations, and other stakeholders, was convened in Jakarta, Indonesia, in January 2004. Prior to this meeting we surveyed all large areas for which orang-utan population status was unknown. Compilation of all survey data produced a comprehensive picture of orang-utan distribution on both Borneo and Sumatra. These results indicate that in 2004 there were c. 6,500 P. abelii remaining on Sumatra and at least 54,000 P. pygmaeus on Borneo. Extrapolating to 2008 on the basis of forest loss on both islands suggests the estimate for Borneo could be 10% too high but that for Sumatra is probably still relatively accurate because forest loss in orang-utan habitat has been low during the conflict in Aceh, where most P. abelii occur. When those population sizes are compared to known historical sizes it is clear that the Sumatran orang-utan is in rapid decline, and unless extraordinary efforts are made soon, it could become the first great ape species to go extinct. In contrast, our results indicate there are more and larger populations of Bornean orang-utans than previously known. Although these revised estimates for Borneo are encouraging, forest loss and associated loss of orang-utans are occurring at an alarming rate, and suggest that recent reductions of Bornean orang-utan populations have been far more severe than previously supposed. Nevertheless, although orang-utans on both islands are under threat, we highlight some reasons for cautious optimism for their long-term conservatio
- …
