873 research outputs found
Fractional branes, warped compactifications and backreacted orientifold planes
The standard extremal p-brane solutions in supergravity are known to allow
for a generalisation which consists of adding a linear dependence on the
world-volume coordinates to the usual harmonic function. In this note we
demonstrate that remarkably this generalisation goes through in exactly the
same way for p-branes with fluxes added to it that correspond to fractional
p-branes. We relate this to warped orientifold compactifications by trading the
Dp-branes for Op-planes that solve the RR tadpole condition. This allows us to
interpret the worldvolume dependence as due to lower-dimensional scalars that
flow along the massless directions in the no-scale potential. Depending on the
details of the fluxes these flows can be supersymmetric domain wall flows. Our
solutions provide explicit examples of backreacted orientifold planes in
compactifications with non-constant moduli.Comment: 20 pages, incl. references. v2: small changes required for JHEP
publication. v3: few equation typos correcte
The problematic backreaction of SUSY-breaking branes
In this paper we investigate the localisation of SUSY-breaking branes which,
in the smeared approximation, support specific non-BPS vacua. We show, for a
wide class of boundary conditions, that there is no flux vacuum when the branes
are described by a genuine delta-function. Even more, we find that the smeared
solution is the unique solution with a regular brane profile. Our setup
consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared
anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure
(Anti-)Brane backreaction beyond perturbation theory
We improve on the understanding of the backreaction of anti-D6-branes in a
flux background that is mutually BPS with D6-branes. This setup is analogous to
the study of the backreaction of anti-D3-branes inserted in the KS throat, but
does not require us to smear the anti-branes or do a perturbative analysis
around the BPS background. We solve the full equations of motion near the
anti-D6-branes and show that only two boundary conditions are consistent with
the equations of motion. Upon invoking a topological argument we eliminate the
boundary condition with regular H flux since it cannot lead to a solution that
approaches the right kind of flux away from the anti-D6-brane. This leaves us
with a boundary condition which has singular, but integrable, H flux energy
density.Comment: 12 pages + appendices, 1 figure; v2: minor changes, version published
in JHE
Wall Crossing, Quivers and Crystals
We study the spectrum of BPS D-branes on a Calabi-Yau manifold using the 0+1
dimensional quiver gauge theory that describes the dynamics of the branes at
low energies. The results of Kontsevich and Soibelman predict how the
degeneracies change. We argue that Seiberg dualities of the quiver gauge
theories, which change the basis of BPS states, correspond to crossing the
"walls of the second kind." There is a large class of examples, including local
del Pezzo surfaces, where the BPS degeneracies of quivers corresponding to one
D6 brane bound to arbitrary numbers of D4, D2 and D0 branes are counted by
melting crystal configurations. We show that the melting crystals that arise
are a discretization of the Calabi-Yau geometry. The shape of the crystal is
determined by the Calabi-Yau geometry and the background B-field, and its
microscopic structure by the quiver Q. We prove that the BPS degeneracies
computed from Q and Q' are related by the Kontsevich Soibelman formula, using a
geometric realization of the Seiberg duality in the crystal. We also show that,
in the limit of infinite B-field, the combinatorics of crystals arising from
the quivers becomes that of the topological vertex. We thus re-derive the
Gromov-Witten/Donaldson-Thomas correspondence
Phases of planar 5-dimensional supersymmetric Chern-Simons theory
In this paper we investigate the large- behavior of 5-dimensional
super Yang-Mills with a level Chern-Simons term and an
adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must
choose an integration contour to completely define the theory. Using
localization, we reduce the path integral to a matrix model with a cubic action
and compute its free energy in various scenarios. In the limit of infinite
Yang-Mills coupling and for particular choices of the contours, we find that
the free-energy scales as for gauge groups with large values
of the Chern-Simons 't\,Hooft coupling, . If we also
set the hypermultiplet mass to zero, then this limit is a superconformal fixed
point and the behavior parallels other fixed points which have known
supergravity duals. We also demonstrate that gauge groups cannot have
this scaling for their free-energy. At finite Yang-Mills coupling we
establish the existence of a third order phase transition where the theory
crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase
transition exists for any value of , although the details differ
between small and large values of . For pure Chern-Simons
theories we present evidence for a chain of phase transitions as
is increased.
We also find the expectation values for supersymmetric circular Wilson loops
in these various scenarios and show that the Chern-Simons term leads to
different physical properties for fundamental and anti-fundamental Wilson
loops. Different choices of the integration contours also lead to different
properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio
Recommended from our members
Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger
Most deep-sea fish have a single visual pigment maximally sensitive at short wavelengths, approximately matching the spectrum of both downwelling sunlight and bioluminescence. However, Malcosteus niger produces far-red bioluminescence and its longwave retinal sensitivity is enhanced by red-shifted visual pigments, a longwave reflecting tapetum and, uniquely, a bacteriochlorophyllderived photosensitizer. The origin of the photosensitizer, however, remains unclear. We investigated whether the bacteriochlorophyll was produced by endosymbiotic bacteria within unusual structures adjacent to the photoreceptors that had previously been described in this species. However, microscopy, elemental analysis and SYTOX green staining provided no evidence for such localised retinal bacteria, instead the photosensitizer was shown to be distributed throughout the retina. Furthermore, comparison of mRNA from the retina of Malacosteus to that of the closely related Pachystomias microdon (which does not contain a bacterichlorophyll-derived photosensitzer) revealed no genes of bacterial origin that were specifically up-regulated in Malacosteus. Instead up-regulated Malacosteus genes were associated with photosensitivity and may relate to its unique visual ecology and the chlorophyll-based visual system. We also suggest that the unusual longwave-reflecting, astaxanthin-based, tapetum of Malacosteus may protect the retina from the potential cytotoxicity of such a system
Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY
It has been argued that rather generic features of string-inspired
inflationary theories with low-energy supersymmetry (SUSY) make it difficult to
achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the
gravitino mass in the SUSY-breaking vacuum state. We present a class of
string-inspired supergravity realizations of chaotic inflation where a simple,
dynamical mechanism yields hierarchically small scales of post-inflationary
supersymmetry breaking. Within these toy models we can easily achieve small
ratios between m_{3/2} and the Hubble scale of inflation. This is possible
because the expectation value of the superpotential relaxes from large to
small values during the course of inflation. However, our toy models do not
provide a reasonable fit to cosmological data if one sets the SUSY-breaking
scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent
tension between high-scale inflation and low-scale supersymmetry breaking in
string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor
changes, version to appear in JHE
Connecting the Holographic and Wilsonian Renormalization Groups
Inspired by the AdS/CFT correspondence, we develop an explicit formal duality
between the planar limit of a d-dimensional gauge theory and a classical field
theory in a (d+1)-dimensional anti-de Sitter space. The key ingredient is the
identification of fields in AdS with generalized Hubbard-Stratonovich
transforms of single-trace couplings of the QFT. We show that the Wilsonian
renormalization group flow of these transformed couplings matches the
holographic (Hamilton-Jacobi) flow of bulk fields along the radial direction in
AdS. This result allows one to outline an AdS/CFT dictionary that does not rely
on string theory.Comment: 11 pages, 1 figure; metadata modified in v2; added references and
minor changes in v3; v4 as published in JHE
Quiver Structure of Heterotic Moduli
We analyse the vector bundle moduli arising from generic heterotic
compactifications from the point of view of quiver representations. Phenomena
such as stability walls, crossing between chambers of supersymmetry, splitting
of non-Abelian bundles and dynamic generation of D-terms are succinctly encoded
into finite quivers. By studying the Poincar\'e polynomial of the quiver moduli
space using the Reineke formula, we can learn about such useful concepts as
Donaldson-Thomas invariants, instanton transitions and supersymmetry breaking.Comment: 38 pages, 5 figures, 1 tabl
D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades
We perform a systematic analysis of the D-brane charges associated with
string theory realizations of d=3 gauge theories, focusing on the examples of
the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric
U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction
of these theories and their dual string theory backgrounds in the supergravity
approximation. In the N=4 case we generalize the previously known gravitational
duals to arbitrary values of the gauge couplings, and present a precise mapping
between the gravity and field theory parameters. In the N=3 case, which (for
some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter
theory in the IR, we argue that the careful analysis of the charges leads to a
shift in the value of the B-field in the IR solution by 1/2, in units where its
periodicity is one, compared to previous claims. We also suggest that the N=3
theories may exhibit, for some values of N and M, duality cascades similar to
those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde
- …
