85 research outputs found
Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis
Streptococcus uberis and Serratia marcescens are Gram-positive and Gram-negative bacteria, respectively, that induce clinical mastitis. Once initial host barrier systems have been breached by these pathogens, the innate immune system provides the next level of defense against these infectious agents. The innate immune response is characterized by the induction of pro-inflammatory cytokines, as well as increases in other accessory proteins that facilitate host recognition and elimination of the pathogens. The objective of the current study was to characterize the innate immune response during clinical mastitis elicited by these two important, yet less well-studied, Gram-positive and Gram-negative organisms. The pro-inflammatory cytokine response and changes in the levels of the innate immune accessory recognition proteins, soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), were studied. Decreased milk output, induction of a febrile response, and increased acute phase synthesis of LBP were all characteristic of the systemic response to intramammary infection with either organism. Infection with either bacteria similarly resulted in increased milk levels of IL-1, IL-8, IL-10, IL-12, IFN-, TNF-, sCD14, LBP, and the complement component, C5a. However, the duration of and/or maximal changes in the increased levels of these inflammatory markers were significantly different for several of the inflammatory parameters assayed. In particular, S. uberis infection was characterized by the sustained elevation of higher milk levels of IL-1, IL-10, IL-12, IFN-, and C5a, relative to S. marcescens infection. Together, these data demonstrate the variability of the innate immune response to two distinct mastitis pathogens
Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection
Staphylococcus aureus and Escherichia coli are among the most prevalent species of gram-positive and gram-negative bacteria, respectively, that induce clinical mastitis. The innate immune system comprises the immediate host defense mechanisms to protect against infection and contributes to the initial detection of and proinflammatory response to infectious pathogens. The objective of the present study was to characterize the different innate immune responses to experimental intramammary infection with E. coli and S. aureus during clinical mastitis. The cytokine response and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide-binding protein (LBP), two proteins that contribute to host recognition of bacterial cell wall products, were studied. Intramammary infection with either E. coli or S. aureus elicited systemic changes, including decreased milk output, a febrile response, and induction of the acute-phase synthesis of LBP. Infection with either bacterium resulted in increased levels of interleukin 1beta (IL-1beta), gamma interferon, IL-12, sCD14, and LBP in milk. High levels of the complement cleavage product C5a and the anti-inflammatory cytokine IL-10 were detected at several time points following E. coli infection, whereas S. aureus infection elicited a slight but detectable increase in these mediators at a single time point. Increases in IL-8 and tumor necrosis factor alpha were observed only in quarters infected with E. coli. Together, these data demonstrate the variability of the host innate immune response to E. coli and S. aureus and suggest that the limited cytokine response to S. aureus may contribute to the well-known ability of the bacterium to establish chronic intramammary infection
Changing trends in mastitis
<p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p
A peptide derived from human bactericidal/ permeability-increasing protein (BPI) exerts bactericidal activity against Gram-negative bacterial isolates obtained from clinical cases of bovine mastitis
Gram-negative bacteria are responsible for approximately one-third of the clinical cases of bovine mastitis and can elicit a life-threatening, systemic inflammatory response. Lipopolysaccharide (LPS) is a membrane component of Gram-negative bacteria and is largely responsible for evoking the inflammatory response. Antibiotic and anti-inflammatory therapy for treating Gram-negative infections remains suboptimal. Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived protein with antimicrobial and LPS-neutralizing properties. Select peptide derivatives of BPI are reported to retain these properties. The objective of this study was to evaluate the antimicrobial activity of a human BPI-derived synthetic peptide against clinical bovine mastitis isolates of Gram-negative bacteria. A hybrid peptide was synthesized corresponding to two regions of human BPI (amino acids 90–99 and 148–161), the former of which has bactericidal activity and the latter of which has LPS-neutralizing activity. The minimum inhibitory (MIC) and bactericidal (MBC) concentrations of this peptide against various genera of bacteria were determined using a broth microdilution assay. The MIC’s were determined to be: 16–64 mg/ml against Escherichia coli; 32–128 mg/ml against Klebsiella pneumoniae and Enterobacter spp.; and 64–256 mg/ml against Pseudomonas aeruginosa. The MBC’s were equivalent to or 1-fold greater than corresponding MIC’s. The peptide had no growth inhibitory effect on Serratia marcescens. The antimicrobial activity of the peptide was retained in the presence of serum, but severely impaired in milk. Further functional evaluation of the peptide demonstrated its ability to completely neutralize LPS. Together, these data support additional investigations into the therapeutic application of BPI to the treatment of Gram-negative infections in cattle
Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis
Gram-negative bacterial sepsis remains a common, life-threatening event. The prognosis for patients who develop sepsis-related complications, including the development of acute respiratory distress syndrome (ARDS), remains poor. A common finding among patients and experimental animals with sepsis and ARDS is endothelial injury and/or dysfunction. A component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) or endotoxin, has been implicated in the pathogenesis of much of the endothelial cell injury and/or dysfunction associated with these disease states. LPS is a highly proinflammatory molecule that elicits a wide array of endothelial responses, including the upregulation of cytokines, adhesion molecules, and tissue factor. In addition to activation, LPS induces endothelial cell death that is apoptotic in nature. This review summarizes the evidence for LPS-induced vascular endothelial injury and examines the molecular signaling pathways that activate and inhibit LPS-induced endothelial apoptosis. Furthermore, the role of apoptotic signaling molecules in mediating LPS-induced activation of endothelial cells will be considered.</jats:p
Staphylococcus aureus intramammary infection elicits increased production of transforming growth factor-alpha, beta 1, and beta 2
In contrast to other mastitis pathogens, the host response evoked during Staphylococcus aureus intramarnmary infection is marked by the absence of the induction of critical cytokines, including IL-8 and TNF-alpha, which have established roles in mediating host innate immunity. The elucidation of changes in the expression of other mediators with the potential to regulate mammary inflammatory responses to S. aureus remains lacking. Transforming growth factor (TGF)-alpha, TGF-beta 1, and TGF-beta 2 are cytokines that regulate mammary gland development. Because these cytokines also have a demonstrated role in mediating inflammation, the objective of the current study was to determine whether S. aureus intramammary infection influences their expression. Ten cows were challenged with S. aureus and milk samples collected. Increases in milk levels of TGF-alpha were evident within 32 h of infection and persisted for 16 h. Increases in TGF-beta 1 and TGF-beta 2 levels were detected within 40 It of S. auretts infection and persisted through the end of the study. Thus, in contrast to IL-8 and TNF-a, S. aureus elicits host production of TGF-alpha, TGF-beta 1, and TGF-beta 2. This finding may suggest a role for these cytokines in mediating mammary gland host innate immune responses to S. aureus. Published by Elsevier B.V
Increased milk levels of transforming growth factor-alpha, beta 1, and beta 2 during Escherichia coli-induced mastitis
Among the gram-negative bacteria that cause mastitis, Escherichia coli are the most prevalent. The innate immune system provides initial protection against E. coli infection by detecting the presence of the foreign pathogens and by mounting an inflammatory response, the latter of which is mediated by cytokines such as IL-1 beta, IL-8, and tumor necrosis factor (TNF)-alpha. Although changes in these cytokines during mastitis have been well-described, it is believed that other mediators moderate mammary gland inflammatory responses as well. The growth factors/cytokines transforming growth factor (TGF)-alpha, TGF-beta 1, and TGF-beta 2 are all expressed in the mammary gland and have been implicated in regulating mammary gland development. In other tissues, these growth factors/cytokines have been shown to moderate inflammation. The objective of the current study was to determine whether TGF-alpha, TGF-beta 1, and TGF-beta 2 milk concentrations were altered during the course of E. coli-induced mastitis. The contralateral quarters of 11 midlactating Holstein cows were challenged with either saline or 72 cfu of E. coli, and milk samples were collected. Basal milk levels of TGF-alpha, TGF-beta 1, and TGF-beta 2 were 98.81 +/- 22.69 pg/mL, 3.35 +/- 0.49 ng/mL, and 22.36 +/- 3.78 ng/mL, respectively. Analysis of whey samples derived from E. coli-infected quarters revealed an increase in milk levels of TGF-alpha within 16 h of challenge, and these increases persisted for an additional 56 h. Elevated TGF-beta 1 and TGF-beta 2 milk concentrations were detected in E. coli-infected quarters 32 h after challenge, and these elevations were sustained throughout the study. Because TGF-alpha, TGF-beta 1, and TGF-beta 2 have been implicated in mediating inflammatory processes, their induction during mastitis is consistent with a role for these molecules in mediating mammary gland host innate immune responses to infection
Bacterial Lipopolysaccharide Disrupts Endothelial Monolayer Integrity and Survival Signaling Events through Caspase Cleavage of Adherens Junction Proteins
- …
