2,868 research outputs found
Dynamic Limits on Planar Libration-Orbit Coupling Around an Oblate Primary
This paper explores the dynamic properties of the planar system of an
ellipsoidal satellite in an equatorial orbit about an oblate primary. In
particular, we investigate the conditions for which the satellite is bound in
librational motion or when the satellite will circulate with respect to the
primary. We find the existence of stable equilibrium points about which the
satellite can librate, and explore both the linearized and non-linear dynamics
around these points. Absolute bounds are placed on the phase space of the
libration-orbit coupling through the use of zero-velocity curves that exist in
the system. These zero-velocity curves are used to derive a sufficient
condition for when the satellite's libration is bound to less than 90 degrees.
When this condition is not satisfied so that circulation of the satellite is
possible, the initial conditions at zero libration angle are determined which
lead to circulation of the satellite. Exact analytical conditions for
circulation and the maximum libration angle are derived for the case of a small
satellite in orbits of any eccentricity.Comment: Submitted to Celestial Mechanics and Dynamical Astronom
Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro
Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion.
4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged.
In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride.
It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane
Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY
It has been argued that rather generic features of string-inspired
inflationary theories with low-energy supersymmetry (SUSY) make it difficult to
achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the
gravitino mass in the SUSY-breaking vacuum state. We present a class of
string-inspired supergravity realizations of chaotic inflation where a simple,
dynamical mechanism yields hierarchically small scales of post-inflationary
supersymmetry breaking. Within these toy models we can easily achieve small
ratios between m_{3/2} and the Hubble scale of inflation. This is possible
because the expectation value of the superpotential relaxes from large to
small values during the course of inflation. However, our toy models do not
provide a reasonable fit to cosmological data if one sets the SUSY-breaking
scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent
tension between high-scale inflation and low-scale supersymmetry breaking in
string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor
changes, version to appear in JHE
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy
The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.The Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in the United Kingdom
Primary Care Staff's Views and Experiences Related to Routinely Advising Patients about Physical Activity. A Questionnaire Survey
Background: United Kingdom public health policy has recently re-emphasised the role of primary health care professionals in tackling increasing levels of physical inactivity within the general population. However,
little is known about the impact that this has had in practice. This study explores Scottish primary care staff's knowledge, attitudes and experiences associated with advising patients about physical activity during
routine consultations.
Methods: A cross-sectional questionnaire survey of general practitioners (or family physicians), practice nurses and health visitors based in four health regions was conducted during 2004. The main outcome measures included: i) health professionals' knowledge of the current physical activity recommendations;
(ii) practice related to routine physical activity advising; and (iii) associated attitudes.
Results: Questionnaires were returned by 757 primary care staff (response rate 54%). Confidence and enthusiasm for giving advice was generally high, but knowledge of current physical activity recommendations was low. In general, respondents indicated that they routinely discuss and advise patients about physical activity regardless of the presenting condition. Health visitors and practice nurses
were more likely than general practitioners to offer routine advice.
Lack of time and resources were more likely to be reported as barriers to routine advising by general practitioners than other professional groups. However, health visitors and practice nurses were also more likely than general practitioners to believe that patients would follow their physical activity advice giving.
Conclusion: If primary health care staff are to be fully motivated and effective in encouraging and supporting the general population to become more physically active, policymakers and health professionals need to engage in efforts to: (1) improve knowledge of current physical activity recommendations and population trends amongst frontline primary care staff; and (2) consider the development of tools to support individual assessment and advice giving to suit individual circumstances. Despite the fact that this study found that system barriers to routine advising were less of a problem than other previous research has indicated, this issue still remains a challenge
Autonomous quantum machines and the finite sized Quasi-Ideal clock
Processes such as quantum computation, or the evolution of quantum cellular
automata are typically described by a unitary operation implemented by an
external observer. In particular, an interaction is generally turned on for a
precise amount of time, using a classical clock. A fully quantum mechanical
description of such a device would include a quantum description of the clock
whose state is generally disturbed because of the back-reaction on it. Such a
description is needed if we wish to consider finite sized autonomous quantum
machines requiring no external control. The extent of the back-reaction has
implications on how small the device can be, on the length of time the device
can run, and is required if we want to understand what a fully quantum
mechanical treatment of an observer would look like. Here, we consider the
implementation of a unitary by a finite sized device which we call the
"Quasi-Ideal clock", and show that the back-reaction on it can be made
exponentially small in the device's dimension with only a linear increase in
energy. As a result, an autonomous quantum machine need only be of modest size
and or energy. We are also able to solve a long-standing open problem by using
a finite sized quantum clock to approximate the continuous evolution of an
Idealised clock. The result has implications on the equivalence of different
paradigms of quantum thermodynamics, some which allow external control and some
which only allow autonomous thermal machines.Comment: Main text: 9 + 53 pages. V4: Close to the published version, J.
Annales Henri Poincar\'e (2018) [Communicated by David P\'erez-Garc\'ia
Yukawa hierarchies at the point of in F-theory
We analyse the structure of Yukawa couplings in local SU(5) F-theory models
with enhancement. In this setting the symmetry is broken down to
SU(5) by a 7-brane configuration described by T-branes, all the Yukawa
couplings are generated in the vicinity of a point and only one family of
quarks and leptons is massive at tree-level. The other two families obtain
their masses when non-perturbative effects are taken into account, being
hierarchically lighter than the third family. However, and contrary to previous
results, we find that this hierarchy of fermion masses is not always
appropriate to reproduce measured data. We find instead that different T-brane
configurations breaking to SU(5) give rise to distinct hierarchical
patterns for the holomorphic Yukawa couplings. Only some of these patterns
allow to fit the observed fermion masses with reasonable local model parameter
values, adding further constraints to the construction of F-theory GUTs. We
consider an model where such appropriate hierarchy is realised and
compute its physical Yukawas, showing that realistic charged fermions masses
can indeed be obtained in this case.Comment: 46 pages + appendices, 5 figures. v2, added references and typos
corrected, version accepted on JHEP. v3, typos correcte
de Branges-Rovnyak spaces: basics and theory
For a contractive analytic operator-valued function on the unit disk
, de Branges and Rovnyak associate a Hilbert space of analytic
functions and related extension space
consisting of pairs of analytic functions on the unit disk . This
survey describes three equivalent formulations (the original geometric de
Branges-Rovnyak definition, the Toeplitz operator characterization, and the
characterization as a reproducing kernel Hilbert space) of the de
Branges-Rovnyak space , as well as its role as the underlying
Hilbert space for the modeling of completely non-isometric Hilbert-space
contraction operators. Also examined is the extension of these ideas to handle
the modeling of the more general class of completely nonunitary contraction
operators, where the more general two-component de Branges-Rovnyak model space
and associated overlapping spaces play key roles. Connections
with other function theory problems and applications are also discussed. More
recent applications to a variety of subsequent applications are given in a
companion survey article
- …
