202 research outputs found

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    BST2/Tetherin Enhances Entry of Human Cytomegalovirus

    Get PDF
    Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV), indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV) from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV

    Lack of Detection of XMRV in Seminal Plasma from HIV-1 Infected Men in The Netherlands

    Get PDF
    Background: Xenotropic murine leukaemia virus-related virus (XMRV) is a recently discovered human gammaretrovirus with yet unknown prevalence and transmission route(s). Its presence in prostate stromal fibroblasts and prostatic secretions suggests that XMRV might be sexually transmitted. We chose to study a compartment closely connected to the prostate, a location where XMRV was detected in independent studies. Seminal plasma samples from HIV-1 infected men were examined as they have an increased probability of acquiring sexually transmitted pathogens. Methodology/Principal Findings: We studied the prevalence of XMRV in 93 seminal plasma samples of 54 HIV-1 infected men living in The Netherlands with a nested PCR amplification specifically targeting the XMRV gag gene. As a control for the presence and integrity of retrovirus particles, HIV-1 was amplified from the same samples with a PCR amplification targeting the env gene of the virus, or HIV-1 was quantified with a real-time PCR amplifying part of the pol gene. Conclusions/Significance: Although HIV-1 was amplified from 25 % of the seminal plasma samples, no XMRV was detected, suggesting that either the prevalence of XMRV is very low in The Netherlands, or that XMRV is not naturally present in th

    Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Get PDF
    BACKGROUND: Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. METHODS: Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by) Kaplan-Meier survival curves. RESULTS: Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p < 0.01) with the high affinity ligand ephrin A1. A similar trend was observed between EphA2 and ephrin A1 (r = 0.387; p = 0.06). A striking correlation of both ephrin A1 and ephrin A5 expression with poor survival (r = -0.470; p = 0.02 and r = -0.562; p < 0.01) was observed. Intriguingly, there was no correlation between survival and other clinical parameters or Eph expression. CONCLUSION: These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis

    Transcranial Doppler ultrasonography predicts cardiovascular events after TIA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transient ischemic attack (TIA) patients are at high vascular risk. We assessed the value of extracranial (ECD) and transcranial (TCD) Doppler and duplex ultrasonography to predict clinical outcome after TIA.</p> <p>Methods</p> <p>176 consecutive TIA patients admitted to the Stroke Unit were recruited in the study. All patients received diffusion-weighted imaging, standardized ECD and TCD. At a median follow-up of 27 months, new vascular events were recorded.</p> <p>Results</p> <p>22 (13.8%) patients experienced an ischemic stroke or TIA, 5 (3.1%) a myocardial infarction or acute coronary syndrome, and 5 (3.1%) underwent arterial revascularization. ECD revealed extracranial ≥ 50% stenosis or occlusions in 34 (19.3%) patients, TCD showed intracranial stenosis in 15 (9.2%) and collateral flow patterns due to extracranial stenosis in 5 (3.1%) cases. Multivariate analysis identified these abnormal ECD and TCD findings as predictors of new cerebral ischemic events (ECD: hazard ratio (HR) 4.30, 95% confidence interval (CI) 1.75 to 10.57, P = 0.01; TCD: HR 4.73, 95% CI 1.86 to 12.04, P = 0.01). Abnormal TCD findings were also predictive of cardiovascular ischemic events (HR 18.51, 95% CI 3.49 to 98.24, P = 0.001).</p> <p>Conclusion</p> <p>TIA patients with abnormal TCD findings are at high risk to develop further cerebral and cardiovascular ischemic events.</p

    Post-Exposure Vaccination Improves Gammaherpesvirus Neutralization

    Get PDF
    Herpesvirus carriers transmit infection despite making virus-specific antibodies. Thus, their antibody responses are not necessarily optimal. An important question for infection control is whether vaccinating carriers might improve virus neutralization. The antibody response to murine gamma-herpesvirus-68 (MHV-68) blocks cell binding, but fails to block and even enhances an IgG Fc receptor-dependent infection of myeloid cells. Viral membrane fusion therefore remains intact. Although gH/gL-specific monoclonal antibodies can block infection at a post-binding step close to membrane fusion, gH/gL is a relatively minor antibody target in virus carriers. We show here that gH/gL-specific antibodies can block both Fc receptor-independent and Fc receptor-dependent infections, and that vaccinating virus carriers with a gH/gL fusion protein improves their capacity for virus neutralization both in vitro and in vivo. This approach has the potential to reduce herpesvirus transmission

    Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    Get PDF
    The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report, to our knowledge, the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in each of the four Dlg paralogs showed that simple associative learning required Dlg4, whereas Dlg2 and Dlg3 diversified to have opposing functions in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed that Dlg2\u27s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 million years. Dlg-family mutations underlie psychiatric disorders, suggesting that genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness
    corecore