15 research outputs found

    Face recognition by Metropolitan Police super-recognisers

    Get PDF
    Face recognition is used to prove identity across a wide variety of settings. Despite this, research consistently shows that people are typically rather poor at matching faces to photos. Some professional groups, such as police and passport officers, have been shown to perform just as poorly as the general public on standard tests of face recognition. However, face recognition skills are subject to wide individual variation, with some people showing exceptional ability—a group that has come to be known as 'super-recognisers'. The Metropolitan Police Force (London) recruits 'super-recognisers' from within its ranks, for deployment on various identification tasks. Here we test four working super-recognisers from within this police force, and ask whether they are really able to perform at levels above control groups. We consistently find that the police 'super-recognisers' perform at well above normal levels on tests of unfamiliar and familiar face matching, with degraded as well as high quality images. Recruiting employees with high levels of skill in these areas, and allocating them to relevant tasks, is an efficient way to overcome some of the known difficulties associated with unfamiliar face recognition

    High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium.

    Get PDF
    Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance.ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. CNIO-BCS was supported by the Genome Spain Foundation, the Red Tematica de Investigacion Cooperativa en Cancer and grants from the Asociacion Espaola Contra el Cancer and the Fondo de Investigacion Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The ESTHER study was supported by a grant from the Baden Wurttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 106332, 108253, 108419], the Hamburg Cancer Society, the German Cancer Research Center (DKFZ) and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402]. The MCBCS was supported by an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, the Mayo Clinic Breast Cancer Registry and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. ORIGO authors thank E. Krol-Warmerdam, and J. Blom; The contributing studies were funded by grants from the Dutch Cancer Society (UL1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SEARCH is funded by programme grant from Cancer Research UK [C490/A10124. C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. Part of this work was supported by the European Community’s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009223175) (COGS). The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. We acknowledge funds from Breakthrough Breast Cancer, UK, in support of MGC at the time this work was carried out and funds from the Cancer Research, UK, in support of MA.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cjp2.4

    HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer

    Get PDF
    BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse

    Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups.

    Get PDF
    BACKGROUND: The value of KI67 in breast cancer prognostication has been questioned due to concerns on the analytical validity of visual KI67 assessment and methodological limitations of published studies. Here, we investigate the prognostic value of automated KI67 scoring in a large, multicentre study, and compare this with pathologists' visual scores available in a subset of patients. METHODS: We utilised 143 tissue microarrays containing 15,313 tumour tissue cores from 8088 breast cancer patients in 10 collaborating studies. A total of 1401 deaths occurred during a median follow-up of 7.5 years. Centralised KI67 assessment was performed using an automated scoring protocol. The relationship of KI67 levels with 10-year breast cancer specific survival (BCSS) was investigated using Kaplan-Meier survival curves and Cox proportional hazard regression models adjusted for known prognostic factors. RESULTS: Patients in the highest quartile of KI67 (>12 % positive KI67 cells) had a worse 10-year BCSS than patients in the lower three quartiles. This association was statistically significant for ER-positive patients (hazard ratio (HR) (95 % CI) at baseline = 1.96 (1.31-2.93); P = 0.001) but not for ER-negative patients (1.23 (0.86-1.77); P = 0.248) (P-heterogeneity = 0.064). In spite of differences in characteristics of the study populations, the estimates of HR were consistent across all studies (P-heterogeneity = 0.941 for ER-positive and P-heterogeneity = 0.866 for ER-negative). Among ER-positive cancers, KI67 was associated with worse prognosis in both node-negative (2.47 (1.16-5.27)) and node-positive (1.74 (1.05-2.86)) tumours (P-heterogeneity = 0.671). Further classification according to ER, PR and HER2 showed statistically significant associations with prognosis among hormone receptor-positive patients regardless of HER2 status (P-heterogeneity = 0.270) and among triple-negative patients (1.70 (1.02-2.84)). Model fit parameters were similar for visual and automated measures of KI67 in a subset of 2440 patients with information from both sources. CONCLUSIONS: Findings from this large-scale multicentre analysis with centrally generated automated KI67 scores show strong evidence in support of a prognostic value for automated KI67 scoring in breast cancer. Given the advantages of automated scoring in terms of its potential for standardisation, reproducibility and throughput, automated methods appear to be promising alternatives to visual scoring for KI67 assessment

    Participant scores and projections

    No full text
    Demographic data, recall data, recognition data, and projections

    Data from: How many faces do people know?

    No full text
    Over our species history, humans have typically lived in small groups of under a hundred individuals. However, our face recognition abilities appear to equip us to recognize very many individuals, perhaps thousands. Modern society provides access to huge numbers of faces, but no one has established how many faces people actually know. Here we describe a method for estimating this number. By combining separate measures of recall and recognition, we show that people know about 5000 faces on average, and that individual differences are large. Our findings offer a possible explanation for large variation in identification performance. They also provide constraints on understanding the qualitative differences between perception of familiar and unfamiliar faces—a distinction that underlies all current theories of face recognition

    Example trials from the PLT.

    No full text
    <p>Images on the left show different identities (with the imposter face on the right). Images on the right show the same identity.</p
    corecore