248 research outputs found

    Sculpting the band gap: a computational approach

    Get PDF
    Materials with optimized band gap are needed in many specialized applications. In this work, we demonstrate that Hellmann-Feynman forces associated with the gap states can be used to find atomic coordinates with a desired electronic density of states. Using tight-binding models, we show that this approach can be used to arrive at electronically designed models of amorphous silicon and carbon. We provide a simple recipe to include a priori electronic information in the formation of computer models of materials, and prove that this information may have profound structural consequences. An additional example of a graphene nanoribbon is provided to demonstrate the applicability of this approach to engineer 2-dimensional materials. The models are validated with plane-wave density functional calculations.Comment: Submitted to Physical Review Letters on June 12, 201

    Numerical studies of the vibrational isocoordinate rule in chalcogenide glasses

    Full text link
    Many properties of alloyed chalcogenide glasses can be closely correlated with the average coordination of these compounds. This is the case, for example, of the ultrasonic constants, dilatometric softening temperature and the vibrational densities of states. What is striking, however, is that these properties are nevertheless almost independent of the composition at given average coordination. Here, we report on some numerical verification of this experimental rule as applied to vibrational density of states.Comment: 7 pages, including 3 figure

    Thermally stimulated H emission and diffusion in hydrogenated amorphous silicon

    Full text link
    We report first principles ab initio density functional calculations of hydrogen dynam- ics in hydrogenated amorphous silicon. Thermal motion of the host Si atoms drives H diffusion, as we demonstrate by direct simulation and explain with simple models. Si-Si bond centers and Si ring centers are local energy minima as expected. We also describe a new mechanism for break- ing Si-H bonds to release free atomic H into the network: a fluctuation bond center detachment (FBCD) assisted diffusion. H dynamics in a-Si:H is dominated by structural fluctuations intrinsic to the amorphous phase not present in the crystal.Comment: 4 pages, 5 figures, In press EPL (Jun. 2007

    The Microscopic Response Method: theory of transport for systems with both topological and thermal disorder

    Full text link
    In this paper, we review and substantially develop the recently proposed "Microscopic Response Method", which has been devised to compute transport coefficients and especially associated temperature dependence in complex materials. The conductivity and Hall mobility of amorphous semiconductors and semiconducting polymers are systematically derived, and shown to be more practical than the Kubo formalism. The effect of a quantized lattice (phonons) on transport coefficients is fully included and then integrated out, providing the primary temperature dependence for the transport coefficients. For higher-order processes, using a diagrammatic expansion, one can consistently include all important contributions to a given order and directly write out the expressions of transport coefficients for various processes.Comment: paper: 12.3 pages, 13 figures, submitted to physica status solidi (b), supporting information: 14.5 page

    The electron-phonon coupling is large for localized states

    Full text link
    From density functional calculations, we show that localized states stemming from defects or topological disorder exhibit an anomalously large electron-phonon coupling. We provide a simple analysis to explain the observation and perform a detailed study on an interesting system: amorphous silicon. We compute first principles deformation potentials (by computing the sensitivity of specific electronic eigenstates to individual classical normal modes of vibration). We also probe thermal fluctuations in electronic eigenvalues by first principles thermal simulation. We find a strong correlation between a static property of the network [localization, as gauged by inverse participation ratio (IPR)] and a dynamical property (the amplitude of thermal fluctuations of electron energy eigenvalues) for localized electron states. In particular, both the electron-phonon coupling and the variance of energy eigenvalues are proportional to the IPR of the localized state. We compare the results for amorphous Si to photoemission experiments. While the computations are carried out for silicon, very similar effects have been seen in other systems with disorder.Comment: 5 pages, 3 PostScript figure

    Hydrogen dynamics and light-induced structural changes in hydrogenated amorphous silicon

    Full text link
    We use accurate first principles methods to study the network dynamics of hydrogenated amorphous silicon, including the motion of hydrogen. In addition to studies of atomic dynamics in the electronic ground state, we also adopt a simple procedure to track the H dynamics in light-excited states. Consistent with recent experiments and computer simulations, we find that dihydride structures are formed for dynamics in the light-excited states, and we give explicit examples of pathways to these states. Our simulations appear to be consistent with aspects of the Staebler-Wronski effect, such as the light-induced creation of well separated dangling bonds.Comment: 9 pages, 8 figures, submitted to PR

    Realistic inversion of diffraction data for an amorphous solid: the case of amorphous silicon

    Full text link
    We apply a new method "force enhanced atomic refinement" (FEAR) to create a computer model of amorphous silicon (a-Si), based upon the highly precise X-ray diffraction experiments of Laaziri et al. The logic underlying our calculation is to estimate the structure of a real sample a-Si using experimental data and chemical information included in a non-biased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable minimum energy according to density functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data than conventional melt quench methods. We compute the vibrational density of states and the specific heat, and find that both compare favorably to experiments.Comment: 7 pages and 10 figure
    corecore