147 research outputs found
Optical calibration hardware for the Sudbury Neutrino Observatory
The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water
Cherenkov neutrino detector are measured in situ using a light diffusing sphere
("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via
specially developed underwater optical fibre umbilical cables. The umbilical
cables are designed to have a small bending radius, and can be easily adapted
for a variety of calibration sources in SNO. The laserball is remotely
manipulated to many positions in the D2O and H2O volumes, where data at six
different wavelengths are acquired. These data are analysed to determine the
absorption and scattering of light in the heavy water and light water, and the
angular dependence of the response of the detector's photomultiplier tubes.
This paper gives details of the physical properties, construction, and optical
characteristics of the laserball and its associated hardware.Comment: 17 pages, 8 figures, submitted to Nucl. Inst. Meth.
The 8Li Calibration Source for the Sudbury Neutrino Obervatory
A calibration source employing 8Li (t_1/2 = 0.838s) has been developed for
use with the Sudbury Neutrino Observatory (SNO). This source creates a spectrum
of beta particles with an energy range similar to that of the SNO 8B solar
neutrino signal. The source is used to test the SNO detector's energy response,
position reconstruction and data reduction algorithms. The 8Li isotope is
created using a deuterium-tritium neutron generator in conjunction with a 11B
target, and is carried to a decay chamber using a gas/aerosol transport system.
The decay chamber detects prompt alpha particles by gas scintillation in
coincidence with the beta particles which exit through a thin stainless steel
wall. A description is given of the production, transport, and tagging
techniques along with a discussion of the performance and application of the
source.Comment: 11 pages plus 9 figures, Sumbitted to Nuclear Instruments and Methods
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Analysis of the low-energy electron-recoil spectrum of the CDMS experiment
We report on the analysis of the low-energy electron-recoil spectrum from the
CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis
provides details on the observed counting rate and possible background sources
in the energy range of 2 - 8.5 keV. We find no significant excess in the
counting rate above background, and compare this observation to the recent DAMA
results. In the framework of a conversion of a dark matter particle into
electromagnetic energy, our 90% confidence level upper limit of 0.246
events/kg/day at 3.15 keV is lower than the total rate above background
observed by DAMA by 8.9. In absence of any specific particle physics
model to provide the scaling in cross section between NaI and Ge, we assume a
Z^2 scaling. With this assumption the observed rate in DAMA differs from the
upper limit in CDMS by 6.8. Under the conservative assumption that the
modulation amplitude is 6% of the total rate we obtain upper limits on the
modulation amplitude a factor of ~2 less than observed by DAMA, constraining
some possible interpretations of this modulation.Comment: 4 pages, 3 figure
Results from a Low-Energy Analysis of the CDMS II Germanium Data
We report results from a reanalysis of data from the Cryogenic Dark Matter
Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken
between October 2006 and September 2008 using eight germanium detectors are
reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased
sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs)
with masses below ~10 GeV/c^2. This analysis provides stronger constraints than
previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter
space associated with possible low-mass WIMP signals from the DAMA/LIBRA and
CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary
files. v3) Added appendix with additional details regarding energy scale and
background
After LUX: The LZ Program
The LZ program consists of two stages of direct dark matter searches using
liquid Xe detectors. The first stage will be a 1.5-3 tonne detector, while the
last stage will be a 20 tonne detector. Both devices will benefit tremendously
from research and development performed for the LUX experiment, a 350 kg liquid
Xe dark matter detector currently operating at the Sanford Underground
Laboratory. In particular, the technology used for cryogenics and electrical
feedthroughs, circulation and purification, low-background materials and
shielding techniques, electronics, calibrations, and automated control and
recovery systems are all directly scalable from LUX to the LZ detectors.
Extensive searches for potential background sources have been performed, with
an emphasis on previously undiscovered background sources that may have a
significant impact on tonne-scale detectors. The LZ detectors will probe
spin-independent interaction cross sections as low as 5E-49 cm2 for 100 GeV
WIMPs, which represents the ultimate limit for dark matter detection with
liquid xenon technology.Comment: Conference proceedings from APS DPF 2011. 9 pages, 6 figure
- …
