15,379 research outputs found

    Forbidden transitions in the helium atom

    Get PDF
    Nonrelativistically forbidden, single-photon transition rates between low lying states of the helium atom are rigorously derived within quantum electrodynamics theory. Equivalence of velocity and length gauges, including relativistic corrections is explicitly demonstrated. Numerical calculations of matrix elements are performed with the use of high precision variational wave functions and compared to former results.Comment: 11 pages, 1 figure, submitted to Phys. Rev.

    Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow

    Full text link
    Experiments on spherical particles in a 3D Couette cell vibrated from below and sheared from above show a hysteretic freezing/melting transition. Under sufficient vibration a crystallized state is observed, which can be melted by sufficient shear. The critical line for this transition coincides with equal kinetic energies for vibration and shear. The force distribution is double-peaked in the crystalline state and single-peaked with an approximately exponential tail in the disordered state. A linear relation between pressure and volume (dP/dV>0dP/dV > 0) exists for a continuum of partially and/or intermittently melted states over a range of parameters

    QED calculation of the n=1 and n=2 energy levels in He-like ions

    Full text link
    We perform ab initio QED calculations of energy levels for the n=1n=1 and n=2n=2 states of He-like ions with the nuclear charge in the range Z=12Z = 12-100. The complete set of two-electron QED corrections is evaluated to all orders in the parameter \aZ. Uncalculated contributions to energy levels come through orders \alpha^3 (\aZ)^2, \alpha^2 (\aZ)^7, and higher. The calculation presented is the first treatment for excited states of He-like ions complete through order \alpha^2 (\aZ)^4. A significant improvement in accuracy of theoretical predictions is achieved, especially in the high-ZZ region.Comment: 23 pages, 5 figure

    Architectures for Human Exploration of Near Earth Asteroids

    Get PDF
    The presentation explores human exploration of Near Earth Asteroid (NEA) key factors including challenges of supporting humans for long-durations in deep-space, incorporation of advanced technologies, mission design constraints, and how many launches are required to conduct a round trip human mission to a NEA. Topics include applied methodology, all chemical NEA mission operations, all nuclear thermal propulsion NEA mission operations, SEP only for deep space mission operations, and SEP/chemical hybrid mission operations. Examples of mass trends between datasets are provided as well as example sensitivity of delta-v and trip home, sensitivity of number of launches and trip home, and expected targets for various transportation architectures

    Proton radii of 4,6,8He isotopes from high-precision nucleon-nucleon interactions

    Full text link
    Recently, precision laser spectroscopy on 6He atoms determined accurately the isotope shift between 4He and 6He and, consequently, the charge radius of 6He. A similar experiment for 8He is under way. We have performed large-scale ab initio calculations for 4,6,8He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of 4He and 6He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the 8He point proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.Comment: 5 pages, 9 figure

    Two-body effects in the decay rate of atomic levels

    Get PDF
    Recoil corrections to the atomic decay rate are considered in the order of Zm/M . The expressions are treated exactly without any expansion over Z alpha. The expressions obtained are valid both for muonic atoms (for which they contribute on the level of a few percent in high Z ions) and for electronic atoms. Explicit results for Lyman-alpha transitions for low-Z of the order (Zm/M)(Z alpha)^2 are also presented.Comment: 5 pages, 1 table, email: [email protected]

    Strategic Implications of Phobos as a Staging Point for Mars Surface Missions

    Get PDF
    As human exploration endeavors begin to set sights beyond low Earth orbit to the surface of the Moon, exploration of the surface of Mars continues to serve as the horizon destination to help focus development and research efforts. One Mars exploration strategy often discussed is the notion of utilizing the moons of Mars, namely Phobos, as an exploration destination prior to Mars surface missions. The premise behind this is that staging missions from Mars moons as well as exploring the moons themselves would be less costly and risky. However, understanding potential advantages of Phobos staging and exploration must be done in the context of the overall end-to-end Mars surface exploration needs, goals, objectives, campaign approach, and systems required. This paper examines the strategic implications of utilizing the moons of Mars as a potential location for exploration of Mars. Operational concepts utilizing both Phobos and Mars orbital strategies will be examined to understand the architectural impacts of this staging strategy. The strategic implications of each operational concept are assessed to determine the overall key challenges and strategic links to other exploration destinations. Results from this analysis indicate that, if the objective is to conduct Mars surface missions, utilizing Phobos as an exploration destination adds little benefit toward the goal of exploration of Mars
    corecore