8,185 research outputs found

    Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow

    Full text link
    Experiments on spherical particles in a 3D Couette cell vibrated from below and sheared from above show a hysteretic freezing/melting transition. Under sufficient vibration a crystallized state is observed, which can be melted by sufficient shear. The critical line for this transition coincides with equal kinetic energies for vibration and shear. The force distribution is double-peaked in the crystalline state and single-peaked with an approximately exponential tail in the disordered state. A linear relation between pressure and volume (dP/dV>0dP/dV > 0) exists for a continuum of partially and/or intermittently melted states over a range of parameters

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    Calculations of polarizabilities and hyperpolarizabilities for the Be+^+ ion

    Get PDF
    The polarizabilities and hyperpolarizabilities of the Be+^+ ion in the 22S2^2S state and the 22P2^2P state are determined. Calculations are performed using two independent methods: i) variationally determined wave functions using Hylleraas basis set expansions and ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be+^+ ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-LL Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.Comment: 18 pp; added details to Sec. I

    A Comprehensive Library of X-ray Pulsars in the Small Magellanic Cloud: Time Evolution of their Luminosities and Spin Periods

    Full text link
    We have collected and analyzed the complete archive of {\itshape XMM-Newton\} (116), {\itshape Chandra\} (151), and {\itshape RXTE\} (952) observations of the Small Magellanic Cloud (SMC), spanning 1997-2014. The resulting observational library provides a comprehensive view of the physical, temporal and statistical properties of the SMC pulsar population across the luminosity range of LX=1031.2L_X= 10^{31.2}--103810^{38}~erg~s1^{-1}. From a sample of 67 pulsars we report \sim1654 individual pulsar detections, yielding \sim1260 pulse period measurements. Our pipeline generates a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and spectrum. Combining all three satellites, we generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Some pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 12/11 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. Of the sample 30 pulsars have relatively very small spin period derivative and may be close to equilibrium spin. The distributions of pulse-detection and flux as functions of spin-period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<P<10 s) are rarely detected, which yet are more prone to giant outbursts. Accompanying this paper is an initial public release of the library so that it can be used by other researchers. We intend the library to be useful in driving improved models of neutron star magnetospheres and accretion physics.Comment: 17 pages, 11 + 58 (appendix) figures. To appear in the Astrophysical Journal Supplemen

    Uncertainty Estimates for Theoretical Atomic and Molecular Data

    Get PDF
    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structure and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final accepted versio
    corecore