8,786 research outputs found
Host-Parasite Co-evolution and Optimal Mutation Rates for Semi-conservative Quasispecies
In this paper, we extend a model of host-parasite co-evolution to incorporate
the semi-conservative nature of DNA replication for both the host and the
parasite. We find that the optimal mutation rate for the semi-conservative and
conservative hosts converge for realistic genome lengths, thus maintaining the
admirable agreement between theory and experiment found previously for the
conservative model and justifying the conservative approximation in some cases.
We demonstrate that, while the optimal mutation rate for a conservative and
semi-conservative parasite interacting with a given immune system is similar to
that of a conservative parasite, the properties away from this optimum differ
significantly. We suspect that this difference, coupled with the requirement
that a parasite optimize survival in a range of viable hosts, may help explain
why semi-conservative viruses are known to have significantly lower mutation
rates than their conservative counterparts
QED calculation of the n=1 and n=2 energy levels in He-like ions
We perform ab initio QED calculations of energy levels for the and
states of He-like ions with the nuclear charge in the range -100.
The complete set of two-electron QED corrections is evaluated to all orders in
the parameter \aZ. Uncalculated contributions to energy levels come through
orders \alpha^3 (\aZ)^2, \alpha^2 (\aZ)^7, and higher. The calculation
presented is the first treatment for excited states of He-like ions complete
through order \alpha^2 (\aZ)^4. A significant improvement in accuracy of
theoretical predictions is achieved, especially in the high- region.Comment: 23 pages, 5 figure
Long-range interactions of metastable helium atoms
Polarizabilities, dispersion coefficients, and long-range atom-surface
interaction potentials are calculated for the n=2 triplet and singlet states of
helium using highly accurate, variationally determined, wave functions.Comment: RevTeX, epsf, 4 fig
An Algorithm for constructing Hjelmslev planes
Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations
of projective planes and affine planes. We present an algorithm for
constructing a projective Hjelmslev planes and affine Hjelsmelv planes using
projective planes, affine planes and orthogonal arrays. We show that all
2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv
planes can be constructed in this way. As a corollary it is shown that all
2-uniform Affine Hjelmselv planes are sub-geometries of 2-uniform projective
Hjelmselv planes.Comment: 15 pages. Algebraic Design Theory and Hadamard matrices, 2014,
Springer Proceedings in Mathematics & Statistics 13
Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination
Changes in the mean-square nuclear charge radii along the lithium isotopic
chain were determined using a combination of precise isotope shift measurements
and theoretical atomic structure calculations. Nuclear charge radii of light
elements are of high interest due to the appearance of the nuclear halo
phenomenon in this region of the nuclear chart. During the past years we have
developed a new laser spectroscopic approach to determine the charge radii of
lithium isotopes which combines high sensitivity, speed, and accuracy to
measure the extremely small field shift of an 8 ms lifetime isotope with
production rates on the order of only 10,000 atoms/s. The method was applied to
all bound isotopes of lithium including the two-neutron halo isotope Li-11 at
the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF,
Vancouver, Canada. We describe the laser spectroscopic method in detail,
present updated and improved values from theory and experiment, and discuss the
results.Comment: 34 pages, 24 figures, 14 table
- …
