571 research outputs found
Kinks, rings, and rackets in filamentous structures
Carbon nanotubes and biological filaments each spontaneously assemble into
kinked helices, rings, and "tennis racket" shapes due to competition between
elastic and interfacial effects. We show that the slender geometry is a more
important determinant of the morphology than any molecular details. Our
mesoscopic continuum theory is capable of quantifying observations of these
structures, and is suggestive of their occurrence in other filamentous
assemblies as well.Comment: This paper was originally published in PNAS 100: 12141-12146 (2003).
The present version has corrected Eq. 3, A1, and A2, and some minor typo
Ultraviolet photonic crystal laser
We fabricated two dimensional photonic crystal structures in zinc oxide films
with focused ion beam etching. Lasing is realized in the near ultraviolet
frequency at room temperature under optical pumping. From the measurement of
lasing frequency and spatial profile of the lasing modes, as well as the
photonic band structure calculation, we conclude that lasing occurs in the
strongly localized defect modes near the edges of photonic band gap. These
defect modes originate from the structure disorder unintentionally introduced
during the fabrication process.Comment: 4 pages, 4 figure
Adolescent Neuroblastoma of Lower Limb
Neuroblastoma is an embryonic tumour of neural crest origin, commonly seen in children with upper abdomen involvement. Rarely neuroblastomas present in adolescents and adults involving lower limb. Histopathologically neuroblastoma of lower limb can be confused with other small round cell tumour especially with Ewing’s sarcoma and rhabdomyosarcoma. A 16 year old male presented with 15x11cm swelling, pain and multiple discharging sinuses of right leg since 4 months. Routine haematological and biochemical analysis were within normal limits. Radiology of right leg showed large soft tissue swelling encompassing the pathological fracture of tibia and bowing of fibula. Fine needle aspiration of the swelling revealed malignant small round cell tumour. Histopathology revealed poorly differentiated neuroblastoma of lower limb. The immunohistochemistry of Synaptophysin and Chromogranin were positive and CD 99 was negative. Neuroblastoma diagnosed at unusual site with uncommon age has poor prognosis. Hence, one must keep in mind the differential diagnosis of neuroblastoma as one of the differential diagnosis in evaluating the soft tissue tumours of lower limb
Mechanism of partial agonism at NMDA receptors for a conformationally restricted glutamate analog
The NMDA ionotropic glutamate receptor is ubiquitous in mammalian central neurons. Because partial agonists bind to the same site as glutamate but induce less channel activation, these compounds provide an opportunity to probe the mechanism of activation of NMDA-type glutamate receptors. Molecular dynamics simulations and site-directed mutagenesis demonstrate that the partial agonist homoquinolinate interacts differently with binding pocket residues than glutamate. Homoquinolinate and glutamate induce distinct changes in the binding pocket, and the binding pocket exhibits significantly more motion with homoquinolinate bound than with glutamate. Patch-clamp recording demonstrates that single-channel activity induced by glutamate or by homoquinolinate has identical single-channel current amplitude and mean open-channel duration but that homoquinolinate slows activation of channel opening relative to glutamate. We hypothesize that agonist-induced conformational changes in the binding pocket control the efficacy of a subunit-specific activation step that precedes the concerted global change in the receptor-channel complex associated with ion channel opening
Propulsion Investigation for Zero and Near-Zero Emissions Aircraft
As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural
network to be idempotent. An idempotent operator is one that can be applied
sequentially without changing the result beyond the initial application, namely
. The proposed model is trained to map a source distribution
(e.g, Gaussian noise) to a target distribution (e.g. realistic images) using
the following objectives: (1) Instances from the target distribution should map
to themselves, namely . We define the target manifold as the set of all
instances that maps to themselves. (2) Instances that form the source
distribution should map onto the defined target manifold. This is achieved by
optimizing the idempotence term, which encourages the range of
to be on the target manifold. Under ideal assumptions such a process
provably converges to the target distribution. This strategy results in a model
capable of generating an output in one step, maintaining a consistent latent
space, while also allowing sequential applications for refinement.
Additionally, we find that by processing inputs from both target and source
distributions, the model adeptly projects corrupted or modified data back to
the target manifold. This work is a first step towards a ``global projector''
that enables projecting any input into a target data distribution
Correlating Photoluminescence and Structural Properties of Uncapped and GaAs-Capped Epitaxial InGaAs Quantum Dots.
The understanding of the correlation between structural and photoluminescence (PL) properties of self-assembled semiconductor quantum dots (QDs), particularly InGaAs QDs grown on (001) GaAs substrates, is crucial for both fundamental research and optoelectronic device applications. So far structural and PL properties have been probed from two different epitaxial layers, namely top-capped and buried layers respectively. Here, we report for the first time both structural and PL measurements from an uncapped layer of InGaAs QDs to correlate directly composition, strain and shape of QDs with the optical properties. Synchrotron X-ray scattering measurements show migration of In atom from the apex of QDs giving systematic reduction of height and enlargement of QDs base in the capping process. The optical transitions show systematic reduction in the energy of ground state and the first excited state transition lines with increase in capping but the energy of the second excited state line remain unchanged. We also found that the excitons are confined at the base region of these elliptically shaped QDs showing an interesting volume-dependent confinement energy scaling of 0.3 instead of 0.67 expected for spherical dots. The presented method will help us tuning the growth of QDs to achieve desired optical properties
Windowless Observation of Evaporation-Induced Coarsening of Au-Pt Nanoparticles in Polymer Nanoreactors
The interactions between nanoparticles and solvents play a critical role in
the formation of complex, metastable nanostructures. However, direct
observation of such interactions with high spatial and temporal resolution is
challenging with conventional liquid-cell transmission electron microscopy
(TEM) experiments. Here, a windowless system consisting of polymer nanoreactors
deposited via scanning probe block copolymer lithography (SPBCL) on an
amorphous carbon film is used to investigate the coarsening of ultrafine (1-3
nm) Au-Pt bimetallic nanoparticles as a function of solvent evaporation. In
such reactors, homogeneous Au-Pt nanoparticles are synthesized from metal ion
precursors in situ under electron irradiation. The non-uniform evaporation of
the thin polymer film not only concentrates the nanoparticles, but also
accelerates the coalescence kinetics at the receding polymer edges. Qualitative
analysis of the particle forces influencing coalescence suggests that capillary
dragging by the polymer edges plays a significant role in accelerating this
process. Taken together, this work: 1) provides fundamental insight into the
role of solvents in the chemistry and coarsening behavior of nanoparticles
during the synthesis of polyelemental nanostructures, 2) provides insight into
how particles form via the SPBCL process, and 3) shows how SPBCL-generated
domes, instead of liquid cells, can be used to study nanoparticle formation.
More generally, it shows why conventional models of particle coarsening, which
do not take into account solvent evaporation, cannot be used to describe what
is occurring in thin film, liquid-based syntheses of nanostructures.Comment: 27 pages, 6 figures. Accepted for publication in JAC
- …
