711 research outputs found

    Application of the Evolution-Variable Manifold Approach to Cavity-Stabilized Ethylene Combustion

    Get PDF
    For combustion in high-speed flows, radical-formation time scales and ignition delay times may be similar to, or dominate, relevant flow time scales. Reliable modeling of induction and autoignition processes is critical to the prediction of combustor performance. The evolution-variable manifold (EVM) approach of Cymbalist and Dimotakis uses a transported scalar to track the evolution of the reaction processes, from induction leading to autoignition and subsequent robust combustion. In the present work, the EVM method is implemented in a computational fluid dynamics code in which wall-modeled large-eddy simulations are performed for two ethylene-air high-speed combustion cases. The detailed thermochemical state of the reacting fluid is tabulated as a function of a reduced number of state variables that include density, energy, mixture fraction, and the reaction-evolution variable. A thermodynamically consistent numerical flux function is developed and the approach for coupling the large-eddy simulation to the EVM framework is discussed. It is found that particular attention must be given to the solution of the energy equation to obtain accurate and computationally stable results. The results show that the LES-EVM approach shows promise for the simulation of turbulent combustion of hydrocarbons in high-speed flows, including those dominated by ignition delay, and encompass regions of thin reaction fronts as well as distributed reaction zones

    Laser slowing of CaF molecules to near the capture velocity of a molecular MOT

    Get PDF
    Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened "white-light" slowing and observe approximately 6x10^4 CaF molecules with velocities near 10\,m/s. CaF is a candidate for collisional studies in the mK regime. This work represents a significant step towards magneto-optical trapping of CaF

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    Get PDF
    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code

    Global diversity in the TAS2R38 bitter taste receptor: Revisiting a classic evolutionary PROPosal

    Get PDF
    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes

    Alteration, reduction and taste loss: Main causes and potential implications on dietary habits

    Get PDF
    Our sense of taste arises from the sensory information generated after compounds in the oral cavity and oropharynx activate taste receptor cells situated on taste buds. This produces the perception of sweet, bitter, salty, sour, or umami stimuli, depending on the chemical nature of the tastant. Taste impairments (dysgeusia) are alterations of this normal gustatory functioning that may result in complete taste losses (ageusia), partial reductions (hypogeusia), or over-acuteness of the sense of taste (hypergeusia). Taste impairments are not life-threatening conditions, but they can cause su_cient discomfort and lead to appetite loss and changes in eating habits, with possible e_ects on health. Determinants of such alterations are multiple and consist of both genetic and environmental factors, including aging, exposure to chemicals, drugs, trauma, high alcohol consumption, cigarette smoking, poor oral health, malnutrition, and viral upper respiratory infections including influenza. Disturbances or loss of smell, taste, and chemesthesis have also emerged as predominant neurological symptoms of infection by the recent Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus strain 2 (SARS-CoV-2), as well as by previous both endemic and pandemic coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV. This review is focused on the main causes of alteration, reduction, and loss of taste and their potential repercussion on dietary habits and health, with a special focus on the recently developed hypotheses regarding the mechanisms through which SARS-CoV-2 might alter taste perception

    Heritability of non-speech auditory processing skills

    Get PDF
    Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6–11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults

    MALS: an efficient strategy for multiple site-directed mutagenesis employing a combination of DNA amplification, ligation and suppression PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple approaches for the site-directed mutagenesis (SDM) have been developed. However, only several of them are designed for simultaneous introduction of multiple nucleotide alterations, and these are time consuming. In addition, many of the existing multiple SDM methods have technical limitations associated with type and number of mutations that can be introduced, or are technically demanding and require special chemical reagents.</p> <p>Results</p> <p>In this study we developed a quick and efficient strategy for introduction of multiple complex mutations in a target DNA without intermediate subcloning by using a combination of connecting SDM and suppression PCR. The procedure consists of sequential rounds, with each individual round including PCR amplification of target DNA with two non-overlapping pairs of oligonucleotides. The desired mutation is incorporated at the 5' end of one or both internal oligonucleotides. DNA fragments obtained during amplification are mixed and ligated. The resulting DNA mixture is amplified with external oligonucleotides that act as suppression adapters. Suppression PCR limits amplification to DNA molecules representing full length target DNA, while amplification of other types of molecules formed during ligation is suppressed. To create additional mutations, an aliquot of the ligation mixture is then used directly for the next round of mutagenesis employing internal oligonucleotides specific for another region of target DNA.</p> <p>Conclusion</p> <p>A wide variety of complex multiple mutations can be generated in a short period of time. The procedure is rapid, highly efficient and does not require special chemical reagents. Thus, MALS represents a powerful alternative to the existing methods for multiple SDM.</p
    corecore