662 research outputs found

    Effect of Beam Dynamics Processes in the Low Energy Ring ThomX

    Full text link
    As part of the R\&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scattering, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). We show how each of these processes degrades the flux of photons produced and how a feedback system contributes to recovering most of the flux.Comment: Submitted to IPAC'14, WEPRO00

    A muon source based on plasma accelerators

    Get PDF
    The conceptual design of a compact source of GeV-class muons is presented, based on a plasma based electron-gamma collider. Evaluations of muon flux, spectra and brilliance are presented, carried out with ad-hoc montecarlo simulations of the electron-gamma collisions. These are analyzed in the context of a large spread of the invariant mass in the e-gamma interaction, due to the typical characteristics of plasma self-injected GeV electron beams, carrying large bunch charges with huge energy spread. The availability of a compact point-like muon source, triggerable at nsec level, may open a completely new scenario in the muon radiography application field

    A collimation system for ELI-NP Gamma Beam System - design and simulation of performance

    Get PDF
    The purpose of this study was to evaluate the performance and refine the design of the collimation system for the gamma radiation source (GBS) currently being realised at ELI-NP facility. The gamma beam, produced by inverse Compton scattering, will provide a tunable average energy in the range between 0.2 and 20 MeV, an energy bandwidth 0.5% and a flux of about 108 photons/s. As a result of the inverse Compton interaction, the energy of the emitted radiation is related to the emission angle, it is maximum in the backscattering direction and decreases as the angle increase [1,2]. Therefore, the required energy bandwidth can be obtained only by developing a specific collimation system of the gamma beam, i.e. filtering out the radiation emitted at larger angles. The angular acceptance of the collimation for ELI-NP-GBS must be continuously adjustable in a range from about 700 to 60 μrad, to obtain the required parameters in the entire energy range. The solution identified is a stack of adjustable slits, arranged with a relative rotation around the beam axis to obtain an hole with an approximately circular shape. In this contribution, the final collimation design and its performance evaluated by carrying out a series of detailed Geant4 simulations both of the high-energy and the low-energy beamline are presented

    Matter from light-light scattering via Breit-Wheeler events produced by two interacting Compton sources

    Get PDF
    We present the dimensioning of a photon-photon collider based on Compton gamma sources for the observation of Breit-Wheeler pair production and QED \u3b3\u3b3 events. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two gamma ray beams through Compton back scattering with two J-class lasers. Tuning the system energy above the Breit-Wheeler cross section threshold, a flux of electron-positron pairs is generated out of light-light interaction. The process is analyzed by start-to-end simulations. Realistic numbers of the secondary particle yield, referring to existing state-of-the-art set-ups and a discussion of the feasibility of the experiment taking into account the background signal are presented

    Quadrupole scan emittance measurements for the ELI-NP compton gamma source

    Get PDF
    The high brightness electron LINAC of the Compton Gamma Source at the ELI Nuclear Physics facility in Roma- nia is accelerating a train of 32 bunches with a nominal total charge of 250 pC and nominal spacing of 16 ns . To achieve the design gamma flux, all the bunches along the train must have the designed Twiss parameters. Beam sizes are mea- sured with optical transition radiation monitors, allowing a quadrupole scan for Twiss parameters measurements. Since focusing the whole bunch train on the screen may lead to permanent screen damage, we investigate non-conventional scans such as scans around a maximum of the beam size or scans with a controlled minimum spot size. This paper discusses the implementation issues of such a technique in the actual machine layou

    High intensity X/ γ photon beams for nuclear physics and photonics

    Get PDF
    In this manuscript we review the challenges of Compton back-scattering sources in advancing photon beam performances in the1−20MeVenergy range, underlining the design criteria bringing tomaximum spectral luminosity and briefly describing the main achieve-ments in conceiving and developing new devices (multi-bunch RF cav-ities and Laser recirculators) for the case of ELI-NP Gamma BeamSystem (ELI-NP-GBS)

    Simulations and Studies of Electron Beam Dynamics under Compton Back-scattering for the Compact X-ray Source ThomX

    No full text
    MOPWO004 - ISBN 978-3-95450-122-9International audienceIn this article are presented beam dynamics investiga- tions of a relativistic electron bunch in the compact storage ring ThomX (50 MeV), which is under construction at LAL to produce hard X-ray using Compton Back-Scattering (CBS). The effect of CBS has been implemented in a 6D tracking code. In addition to CBS, the influence of lattice non linearities and various collective effects on the flux of scattered Compton photons is investigated

    OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE

    Get PDF
    The design guide-lines of RF Linacs to fulfil the requirements of high spectral density Inverse Compton Sources for the photo-nuclear science are mostly taken from the expertise coming from high brightness electron Linacs driving X-ray FEL's. The main difference is the quest for maximum phase space density (instead of peak brightness), but many common issues and techniques are exploited, in order to achieve an optimum design and layout for the machine. A relevant example in this field is the design of the hybrid C-band multi-bunch RF Linacs for the ELI-NP Gamma Beam System, aiming at improving by two orders of magnitude the present state of the art in spectral density available for the gamma-ray beam produced
    corecore