175 research outputs found
Energy and Charged Particle Flow in 10.8 A GeV/c Au+Au Collisions
Experimental results and a detailed analysis are presented of the transverse
energy and charged particle azimuthal distributions measured by the E877
collaboration for different centralities of Au+Au collisions at a beam momentum
of 10.8 A GeV/c. The anisotropy of these distributions is studied with respect
to the reaction plane reconstructed on an event-by-event basis using the
transverse energy distribution measured by calorimeters. Results are corrected
for the reaction plane resolution. For semicentral events we observe directed
flow signals of up to ten percent. We observe a stronger anisotropy for slow
charged particles. For both the charged particle and transverse energy
distributions we observe a small but non zero elliptic anisotropy with the
major axis pointing into the reaction plane. Combining the information on
transverse energy and charged particle flow we obtain information on the flow
of nucleons and pions. The data are compared to event generators and the need
to introduce a mean field or nucleon-nucleon potential is discussed.Comment: RevTex, 25 pages, 13 figures included as one Postscript file,
submitted to Phys. Rev.
Nuclear structure of Ac-231
The low-energy structure of 231Ac has been investigated by means of gamma ray
spectroscopy following the beta-decay of 231Ra. Multipolarities of 28
transitions have been established by measuring conversion electrons with a
mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been
constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t)
method has been used to measure the half-lives of five levels. The moderately
fast B(E1) transition rates derived suggest that the octupole effects, albeit
weak, are still present in this exotic nucleus
Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study
A study of rotational properties of the ground superdeformed bands in \Hg{0},
\Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked
Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme
force in the particle-hole channel and a seniority interaction in the pairing
channel. An approximate particle number projection is performed by means of the
Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle
routhians in connection with the present information on about thirty presently
observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint
IPN-TH 93-6
Directed flow of antiprotons in Au+Au collisions at AGS
Directed flow of antiprotons is studied in Au+Au collisions at a beam
momentum of 11.5A GeV/c. It is shown that antiproton directed flow is
anti-correlated to proton flow. The measured transverse momentum dependence of
the antiproton flow is compared with predictions of the RQMD event generator.Comment: 16 pages, 6 figure
Hadron yields and spectra in Au+Au collisions at the AGS
Inclusive double differential multiplicities and rapidity density
distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as
measured at the AGS by the E877 collaboration. The results indicate that large
amounts of stopping and collective transverse flow effects are present. The
data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark
Matter 1996 Proceedings
Spectroscopy of Po
Prompt, in-beam rays following the reaction Yb + 142 MeV
Si were measured at the ATLAS facility using 10 Compton-suppressed Ge
detectors and the Fragment Mass Analyzer. Transitions in Po were
identified and placed using -ray singles and coincidence data gated on
the mass of the evaporation residues. A level spectrum up to
J10 was established. The structure of Po is more
collective than that observed in the heavier polonium isotopes and indicates
that the structure has started to evolve towards the more collective nature
expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques
Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions
Two-proton correlation functions have been measured in Si+Pb collisions at
14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration.
Data are compared with predictions of the transport model RQMD and the source
size is inferred from this comparison. Our analysis shows that, for both
reactions, the characteristic size of the system at freeze-out exceeds the size
of the projectile, suggesting that the fireball created in the collision has
expanded. For Au+Au reactions, the observed centrality dependence of the
two-proton correlation function implies that more central collisions lead to a
larger source sizes.Comment: RevTex, 12 pages, 5 figure
Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg
Microscopic RPA calculations based on the cranked shell model are performed
to investigate the quadrupole and octupole correlations for excited
superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are
predicted to be the lowest excitation modes at zero rotational frequency. At
finite frequency, however, the interplay between rotation and vibrations
produces different effects depending on neutron number: The lowest octupole
phonon is rotationally aligned in 190Hg, is crossed by the aligned
two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational
character up to the highest frequency in 194Hg. The gamma vibrations are
predicted to be higher in energy and less collective than the octupole
vibrations. From a comparison with the experimental dynamic moments of inertia,
a new interpretation of the observed excited bands invoking the K=2 octupole
vibrations is proposed, which suggests those octupole vibrations may be
prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques
Two-pion correlations in Au+Au collisions at 10.8 GeV/c per nucleon
Two-particle correlation functions for positive and negative pions have been
measured in Au+Au collisions at 10.8~GeV/c per nucleon. The data were analyzed
using one- and three-dimensional correlation functions. From the results of the
three-dimensional fit the phase space density of pions was calculated. It is
consistent with local thermal equilibrium.Comment: 5 pages RevTeX (including 3 Figures
- …
