1,391 research outputs found
Copper metabolism of astrocytes
This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis
Reduced tubulin tyrosination as an early marker of mercury toxicity in differentiating N2a cells
The aims of this work were to compare the effects of methyl mercury chloride and Thimerosal on neurite/process outgrowth and microtubule proteins in differentiating mouse N2a neuroblastoma and rat C6 glioma cells. Exposure for 4 h to sublethal concentrations of both compounds inhibited neurite outgrowth to a similar extent in both cells lines compared to controls. In the case of N2a cells, this inhibitory effect by both compounds was associated with a fall in the reactivity of western blots of cell extracts with monoclonal antibody T1A2, which recognises C-terminally tyrosinated α-tubulin. By contrast, reactivity with monoclonal antibody B512 (which recognises total α-tubulin) was unaffected at the same time point. These findings suggest that decreased tubulin tyrosination represents a neuron-specific early marker of mercury toxicity associated with impaired neurite outgrowth
Exclusive neuronal expression of SUCLA2 in the human brain
SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex
Differential Effects of Iodoacetamide and Iodoacetate on Glycolysis and Glutathione Metabolism of Cultured Astrocytes
Iodoacetamide (IAA) and iodoacetate (IA) have frequently been used to inhibit glycolysis, since these compounds are known for their ability to irreversibly inhibit the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). However, the consequences of a treatment with such thiol reagents on the glutathione (GSH) metabolism of brain cells have not been explored. Exposure of astroglia-rich primary cultures to IAA or IA in concentrations of up to 1 mM deprived the cells of GSH, inhibited cellular GAPDH activity, lowered cellular lactate production and caused a delayed cell death that was detectable after 90 min of incubation. However, the two thiol reagents differed substantially in their potential to deprive cellular GSH and to inhibit astrocytic glycolysis. IAA depleted the cellular GSH content more efficiently than IA as demonstrated by half-maximal effects for IAA and IA that were observed at concentrations of about 10 and 100 μM, respectively. In contrast, IA was highly efficient in inactivating GAPDH and lactate production with half-maximal effects observed already at a concentration below 100 μM, whereas IAA had to be applied in 10 times higher concentration to inhibit lactate production by 50%. These substantial differences of IAA and IA to affect GSH content and glycolysis of cultured astrocytes suggest that in order to inhibit astrocytic glycolysis without substantially compromising the cellular GSH metabolism, IA – and not IAA – should be used in low concentrations and/or for short incubation periods
The insulin-like growth factor I receptor regulates glucose transport by astrocytes
Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using 18FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 201
Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity
A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments
PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm,
a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared
and investigated with regard to their biological activity. This review
summarizes the physicochemical properties (dissolution, protein adsorption,
dispersability) of these nanoparticles and the cellular consequences of the
exposure of a broad range of biological test systems to this defined type of
silver nanoparticles. Silver nanoparticles dissolve in water in the presence
of oxygen. In addition, in biological media (i.e., in the presence of
proteins) the surface of silver nanoparticles is rapidly coated by a protein
corona that influences their physicochemical and biological properties
including cellular uptake. Silver nanoparticles are taken up by cell-type
specific endocytosis pathways as demonstrated for hMSC, primary T-cells,
primary monocytes, and astrocytes. A visualization of particles inside cells
is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM
analysis. By staining organelles, their localization inside the cell can be
additionally determined. While primary brain astrocytes are shown to be fairly
tolerant toward silver nanoparticles, silver nanoparticles induce the
formation of DNA double-strand-breaks (DSB) and lead to chromosomal
aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell
lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo
induced a moderate pulmonary toxicity, however, only at rather high
concentrations. The same was found in precision-cut lung slices of rats in
which silver nanoparticles remained mainly at the tissue surface. In a human
3D triple-cell culture model consisting of three cell types (alveolar
epithelial cells, macrophages, and dendritic cells), adverse effects were also
only found at high silver concentrations. The silver ions that are released
from silver nanoparticles may be harmful to skin with disrupted barrier (e.g.,
wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the
data obtained on the effects of this well-defined type of silver nanoparticles
on various biological systems clearly demonstrate that cell-type specific
properties as well as experimental conditions determine the biocompatibility
of and the cellular responses to an exposure with silver nanoparticles
Social stress increases the susceptibility to infection in the ant Harpegnathos saltator
Aggressive interactions between members of a social group represent an important source of social stress with all its negative follow-ups. We used the ponerine ant Harpegnathos saltator to study the effects of frequent aggressive interactions on the resistance to different stressors. In these ants, removal or death of reproducing animals results in a period of social instability within the colony that is characterized by frequent ritualized aggressive interactions leading to the establishment of a new dominance structure. Animals are more susceptible to infections during this period, whereas their resistance against other stressors remained unchanged. This is associated with a shift from glutathione-S-transferase activities towards glutathione peroxidase activities, which increases the antioxidative capacity at the expense of their immune competence
Recommended from our members
Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes
Neurodegeneration in Alzheimer’s disease (AD) is extensively studied, and the involvement of astrocytes and other cell types in this process has been described. However, the responses of astrocytes themselves to amyloid peptides ((A; the widely accepted major toxic factor in AD) is less well understood. Here, we show that A(1-42) is toxic to primary cultures of astrocytes. Toxicity does not involve disruption of astrocyte Ca2+ homeostasis, but instead occurs via formation of the toxic reactive species, peroxynitrite. Thus, A(1-42) raises peroxynitrite levels in astrocytes, and A(1-42) toxicity can be inhibited by antioxidants, or by inhibition of nitric oxide (NO) formation (reactive oxygen species (ROS) and NO combine to form peroxynitrite), or by a scavenger of peroxynitrite. Increased ROS levels observed following A(1-42) application were derived from NADPH oxidase. Induction of heme oxygenase-1 (HO-1) protected astrocytes from A(1-42) toxicity, and this protective effect was mimicked by application of the carbon monoxide (CO) releasing molecule CORM-2, suggesting HO-1 protection was attributable to its formation of CO. CO suppressed the rise of NADPH oxidase-derived ROS caused by A(1-42). Under hypoxic conditions (0.5% O2, 48h) HO-1 was induced in astrocytes and A(1-42) toxicity was significantly reduced, an effect which was reversed by the specific HO-1 inhibitor, QC-15. Our data suggest that A(1-42) is toxic to astrocytes, but that induction of HO-1 affords protection against this toxicity due to formation of CO. HO-1 induction, or CO donors, would appear to present attractive possible approaches to provide protection of both neuronal and non-neuronal cell types from the degenerative effects of AD in the central nervous system
- …
