1,065 research outputs found
Soil characteristics mediate the distribution and response of boreal trees to climatic variability
We studied the effects of the soil organic layer (SOL) accumulation on growth and distribution of black spruce (Picea mariana (Mill.) BSP) and trembling aspen (Populus tremuloides Michx.) within the Quebec Clay Belt. At the landscape scale, spruce was present over a much larger gradient in SOL thickness (similar to 1 to 100 cm) than aspen (similar to 1 to 30 cm). For trees between 60 and 100 years old, SOL thickness had no effect on the basal area increment (BAI) of spruce but showed a strong and negative correlation with BAI in aspen. Radial growth of black spruce was favored by higher precipitation in June of the previous growing season, higher temperatures in early winter and in spring, and by low temperatures in summer. SOL thickness had statistically significant but moderate effects on the climate-growth relationships in spruce, apparently affecting root insulation during the dormant period and water availability during the growing period. In aspen, current-year June temperature was the most important factor positively correlated with growth. The SOL thickness affected the relationship between the aspen growth and (i) January temperature and (ii) June-August monthly drought code. We predict that the response of black spruce to climate change should be rather uniform across the study region, while the response of aspen is likely to be strongly mediated by SOL thickness
Species-specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change
To understand how the future climate will affect the boreal forest, we studied growth responses to climate variability in black spruce (Picea mariana [Mill.] B.S.P.) and trembling aspen (Populus tremuloides Michx.) two major co-occurring boreal tree species of the eastern Canadian boreal forest. We analysed climate growth interaction during (i) periods of non-anomalous growth and (ii) in years with strong growth anomalies. We utilized paired tree level data for both growth and soil variables, which helped ensure that the studied growth variability was a function of species specific biology, and not of within stand variation in soil conditions. Redundancy analysis conducted on spruce and aspen tree ring chronologies showed that their growth was affected differently by climate. During non-anomalous years, growth of spruce was favoured by cooler temperatures and wetter conditions, while aspen growth was favoured by higher temperatures and drier conditions. Black spruce and trembling aspen also showed an inverse pattern in respect to expression of growth anomalies (pointer years). A negative growth anomaly in spruce tended to be associated with positive ones in aspen and vice versa. This suggested that spruce and aspen had largely contrasting species specific responses to both "average" weather conditions and extreme weather events.
Synthesis. Species specific responses to environmental variability imply that tree responses to future climate will likely be not synchronized among species, which may translate into changes in structure and composition of future forest communities. In particular, we speculate that outcome of climate change in respect to relative abundance of black spruce and trembling aspen at the regional levels will be highly dependent on the balance between increasing temperatures and precipitation. Further, species specific responses of trees to annual climate variability may enhance the resilience of mixed forests by constraining variability in their annual biomass accumulation, as compared to pure stands, under periods with high frequency of climatically extreme conditions
Multi-century reconstruction of fire activity in Northern European boreal forest suggests differences in regional fire regimes and their sensitivity to climate
Forest fires are one of the main disturbance agents in boreal and temperate ecosystems. To deci- pher large-scale temporal and spatial patterns of past fire activity in Scandinavia, we analysed the synchronicity of dendrochoronologically reconstructed fire events in a large network of sites (n = 62; 3296 samples, 392 individual fire years) covering a wide geographical gradient (56.5-67.0° N and 9.3-20.5° E) over AD 1400-1900. We identified large fire years (LFY) as years with region- ally increased forest fire activity and located the geographical centres of climatic anomalies associ- ated with synchronous LFY occurrence across the region, termed LFY centroids. 2. The spatial pattern of LFY centroids indicated the presence of two regions with climatically med- iated synchronicity of fire occurrence, located south and north from 60° N. The return intervals of LFYs in Scandinavia followed a Weibull distribution in both regions. Intervals, however, differed: a period of 40 years would carry a 0.93 probability of LFY occurrence in the southern region, but only a 0.48 probability of LFY occurrence in the northern region. 3. Over 1420-1759, the northern region was characterized by significantly higher temporal variability in LFY occurrence than the southern region. Temporal correlation of LFYs with reconstructed aver- age summer temperature and total precipitation was evident mainly for the northern region. LFYs in this region were associated with positive temperature and negative precipitation anomalies over Scan- dinavia and with colder and wetter conditions in more southern parts of the European subcontinent. 4. Synthesis. Historical patterns of the occurrence of large fire years (LFY) in Scandinavia point towards the presence of two well-defined zones with characteristic fire activity, with the geographi- cal division at approximately 60° N. The northern and mid-boreal forests, although exhibiting lower LFY frequencies, appeared to be more sensitive to past summer climate, as compared to the south- ern boreal forests. This would imply that fire regimes across Scandinavia may show an asynchro- nous response to future climate changes
Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Komi Republic, East European Russia
In an attempt to quantitatively evaluate the natural versus anthropogenic signal in site fire histories, the statistical relationship between dendrochronologically dated fire events and tree-ring chronologies (deemed to be an independent proxy for climate variation) was analyzed for 14 sites in a 2600-km(2) area of pine-dominated forests in the Komi Republic (East European Russia) over the period from 1424 to 1954. We developed a cumulative measure of statistical fit between two types of fire events (early- and late-season fires) and ring-width chronologies of Scots pine (Pinus sylvestris L.) (total ring- and latewood-width chronologies). For a given site, the statistical fit between fires and tree-ring data tended to decrease with an increasing proportion of unique fire years. Distance from a site to the nearest village (deemed to be a proxy of human impact) explained 50% of the variation in statistical fit between fires and tree-ring data. The fit decreased in the majority of the sites from the earlier (1424-1700) to the later (1700-1960) periods. We interpret this to be a result of increased human impact on the fire regime since 1700 due to intensified colonization of the area
Environmental controls of the northern distribution limit of yellow birch in eastern Canada
To evaluate environmental controls of yellow birch (Betula alleghaniensis Britton) distribution at its northern distribution limit in eastern Canada, we analyzed abundance, age structure, biomass accumulation rate, and growth sensitivity to climate of this species at 14 sites along a 200 km latitudinal gradient spanning three bioclimatic domains and reaching frontier populations of this species in western Quebec. We observed a large variability in seedling density across domains and presence of sites with abundant yellow birch regeneration within all three bioclimatic domains. Seedling density was positively correlated to mean age and abundance of yellow birch trees in the canopy, while sapling density was positively associated with dryer habitats. Growth patterns of canopy trees showed no effect of declining temperatures along the south-north gradient. Environmental controls of birch distribution at its northern limit were realized through factors affecting birch regeneration and not growth of canopy trees. At the stand scale, regeneration density was strongly controlled by local site conditions and not by differences in climate among sites. At the regional scale, climate variability could be an indirect driver of yellow birch distribution, affecting disturbance rates and, subsequently, availability of suitable sites for regeneration
- …
