40 research outputs found

    Correlated tunneling and the instability of the fractional quantum Hall edge

    Full text link
    We consider a class of interaction terms that describes correlated tunneling of composite fermions between effective Landau levels. Despite being generic and of similar strength to that of the usual density-density couplings, these terms are not included in the accepted theory of the edges of fractional quantum Hall systems. Here we show that they may lead to an instability of the edge towards a new reconstructed state with additional channels, and thereby demonstrate the incompleteness of the traditional edge theory.Comment: Published versio

    Twist instability in strongly correlated carbon nanotubes

    Full text link
    We show that strong Luttinger correlations of the electron liquid in armchair carbon nanotubes lead to a significant enhancement of the onset temperature of the putative twist Peierls instability. The instability results in a spontaneous uniform twist deformation of the lattice at low temperatures, and a gapped ground state. Depending on values of the coupling constants the umklapp electron scattering processes can assist or compete with the twist instability. In case of the competition the umklapp processes win in wide tubes. In narrow tubes the outcome of the competition depends on the relative strength of the e-e and e-ph backscattering. Our estimates show that the twist instability may be realized in free standing (5,5) tubes.Comment: 4 pages, 1 figur

    Weak-coupling phase diagrams of bond-aligned and diagonal doped Hubbard ladders

    Full text link
    We study, using a perturbative renormalization group technique, the phase diagrams of bond-aligned and diagonal Hubbard ladders defined as sections of a square lattice with nearest-neighbor and next-nearest-neighbor hopping. We find that for not too large hole doping and small next-nearest-neighbor hopping the bond-aligned systems exhibit a fully spin-gapped phase while the diagonal systems remain gapless. Increasing the next-nearest-neighbor hopping typically leads to a decrease of the gap in the bond-aligned ladders, and to a transition into a gapped phase in the diagonal ladders. Embedding the ladders in an antiferromagnetic environment can lead to a reduction in the extent of the gapped phases. These findings suggest a relation between the orientation of hole-rich stripes and superconductivity as observed in LSCO.Comment: Published version. The set of RG equations in the presence of magnetization was corrected and two figures were replace

    Quantum Monte Carlo study of a bilayer U(2)×U(2)U(2)\times U(2) symmetric Hubbard model

    Full text link
    We carry out a sign-problem-free quantum Monte Carlo calculation of a bilayer model with a repulsive intra-layer Hubbard interaction and a ferromagnetic inter-layer interaction. The latter breaks the global SU(2)SU(2) spin rotational symmetry but preserves a U(2)×U(2)U(2)\times U(2) invariance under mixing of same-spin electrons between layers. We show that despite the difference in symmetry, the bilayer model exhibits the same qualitative features found in the single-layer Hubbard model. These include stripe phases, whose nature is sensitive to the presence of next-nearest-neighbor hopping, a maximum in the Knight shift that moves to lower temperatures with increasing hole doping, and lack of evidence for intra-layer dd-wave superconductivity. Instead, we find a superconducting phase whose critical temperature traces a dome as a function of doping and is due to inter-layer spin-polarized pairing that is induced by the ferromagnetic interaction.Comment: 10 pages, 10 figure
    corecore