1,237 research outputs found

    A payload for investigating the influence of convection on GaAs crystal growth

    Get PDF
    A comparative study of the influence of buoyancy driven fluid flow on gallium arsenide (GaAs) crystal growth was undertaken. Crystals will be grown from melts with different degrees of convective flow including growth in the microgravity environment of space. The space growth of GaAs will be performed in a Get Away Special payload. A well insulated growth furnace was designed for both Earth-based and space-based experiments. The self contained payload will carry two such furnaces in addition to a large battery power source and a microprocessor-based control and data acquisition system for regulating the growth process with high precision. The microcomputer will also monitor the growth conditions and measure and record the acceleration in 3 axes

    Substellar multiplicity in the Hyades cluster

    Full text link
    We present the first high-angular resolution survey for multiple systems among very low-mass stars and brown dwarfs in the Hyades open cluster. Using the Keck\,II adaptive optics system, we observed a complete sample of 16 objects with estimated masses \lesssim0.1 Msun. We have identified three close binaries with projected separation \lesssim0.11", or \lesssim5 AU. A number of wide, mostly faint candidate companions are also detected in our images, most of which are revealed as unrelated background sources based on astrometric and/or photometric considerations. The derived multiplicity frequency, 19+13/-6 % over the 2-350 AU range, and the rarity of systems wider than 10 AU are both consistent with observations of field very low-mass objects. In the limited 3-50 AU separation range, the companion frequency is essentially constant from brown dwarfs to solar-type stars in the Hyades cluster, which is also in line with our current knowledge for field stars. Combining the binaries discovered in this surveys with those already known in the Pleiades cluster reveals that very low-mass binaries in open clusters, as well as in star-forming regions, are skewed toward lower mass ratios (0.6q0.80.6 \lesssim q \lesssim 0.8) than are their field counterparts, a result that cannot be accounted for by selection effects. Although the possibility of severe systematic errors in model-based mass estimates for very low-mass stars cannot be completely excluded, it is unlikely to explain this difference. We speculate that this trend indicates that surveys among very low-mass field stars may have missed a substantial population of intermediate mass ratio systems, implying that these systems are more common and more diverse than previously thought.Comment: Accepted for publication in Astronomy & Astrophysics; 11 pages, 6 figure

    Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO₂ Reduction in Aqueous Electrolytes

    Get PDF
    We report the light-induced modification of catalytic selectivity for photoelectrochemical CO₂ reduction in aqueous media using copper (Cu) nanoparticles dispersed onto p-type nickel oxide (p-NiO) photocathodes. Optical excitation of Cu nanoparticles generates hot electrons available for driving CO₂ reduction on the Cu surface, while charge separation is accomplished by hot-hole injection from the Cu nanoparticles into the underlying p-NiO support. Photoelectrochemical studies demonstrate that optical excitation of plasmonic Cu/p-NiO photocathodes imparts increased selectivity for CO₂ reduction over hydrogen evolution in aqueous electrolytes. Specifically, we observed that plasmon-driven CO₂ reduction increased the production of carbon monoxide and formate, while simultaneously reducing the evolution of hydrogen. Our results demonstrate an optical route toward steering the selectivity of artificial photosynthetic systems with plasmon-driven photocathodes for photoelectrochemical CO₂ reduction in aqueous media

    Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion

    Get PDF
    Designing a scalable system to capture CO₂ from the air and convert it into valuable chemicals, fuels, and materials could be transformational for mitigating climate change. Climate models predict that negative greenhouse gas emissions will be required by the year 2050 in order to stay below a 2 °C change in global temperature. The processes of CO₂ capture, CO₂ conversion, and finally product separation all require significant energy inputs; devising a system that simultaneously minimizes the energy required for all steps is an important challenge. To date, a variety of prototype or pilot-level CO₂ capture and/or conversion systems have been designed and built targeting the individual objectives of either capture or conversion. One approach has focused on CO₂ removal from the atmosphere and storage of pure pressurized CO₂. Other efforts have concentrated on CO₂ conversion processes, such as electrochemical reduction or fermentation. Only a few concepts or analyses have been developed for complete end-to-end processes that perform both CO₂ capture and transformation

    Texture evolution during deep-drawing processes

    Full text link
    peer reviewedThis paper presents a constitutive law based on Taylor’s model implemented in our non-linear finite element code LAGAMINE. The yield locus is only locally described and a particular interpolation method has been developed. This local yield locus model uses a discrete representation of the material’s texture. The interpolation method is presented and a deep-drawing application is simulated in order to show up the influence of the texture evolution during forming processes

    Profiling of aminoxyTMT-labeled bovine milk oligosaccharides reveals substantial variation in oligosaccharide abundance between dairy cattle breeds.

    Get PDF
    Free milk oligosaccharides are bioactive molecules that function as prebiotics and prevent infections that commonly afflict developing infants. To date, few publications have examined the factors affecting bovine milk oligosaccharide production among cattle in the dairy industry. Here we have applied a high-throughput isobaric labeling technique to measure oligosaccharide abundances in milk collected from Danish Holstein-Friesian and Jersey dairy cattle by liquid chromatography-mass spectrometry. With a total of 634 milk samples, this collection represents the largest sample set used for milk oligosaccharide profiling in the current literature. This study is also the first to use isobaric labeling for the purpose of measuring free oligosaccharides in a real sample set. We have identified 13 oligosaccharides that vary significantly by breed, with most structures being more abundant in the milk of Jersey cattle. The abundances of several oligosaccharides were increased in second-parity cows, and correlations between the abundances of oligosaccharide pairs were identified, potentially indicating similarities in their synthetic pathways. Fucosylated oligosaccharide structures were widely identified among both breeds. Improving our understanding of oligosaccharide production will aid in developing strategies to recover these compounds from processing streams and may enable their use as a functional ingredient in foods for infants and adults

    A discontinuity in the low-mass initial mass function

    Full text link
    The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1 reference added after being accepted by the Ap

    No Fossil Disk in the T Tauri Multiple System V773 Tau

    Full text link
    We present new multi-epoch near-infrared and optical high-angular images of the V773 Tau pre-main sequence triple system, a weak-line T Tauri (WTTS) system in which the presence of an evolved, ``fossil'' protoplanetary disk has been inferred on the basis of a significant infrared excess. Our images reveal a fourth object bound to the system, V773 Tau D. While it is much fainter than all other components at 2 micron, it is the brightest source in the system at 4.7 micron. We also present medium-resolution K band adaptive optics spectroscopy of this object, which is featureless with the exception of a weak Br gamma emission line. Based on this spectrum and on the spectral energy distribution of the system, we show that V773 Tau D is another member of the small class of ``infrared companions'' (IRCs) to T Tauri stars. It is the least luminous, and probably the least massive, component of the system, as opposed to most other IRCs, which suggests that numerous low-luminosity IRCs such as V773 Tau D may still remain to be discovered. Furthermore, it is the source of the strong IR excess in the system. We therefore reject the interpretation of this excess as the signature of a fossil (or ``passive'') disk and further suggest that these systems may be much less frequent than previously thought. We further show that V773 Tau C is a variable classical T Tauri star (CTTS) and that its motion provides a well constrained orbital model. We show that V773 Tau D can be dynamically stable within this quadruple system if its orbit is highly inclined. Finally, V773 Tau is the first multiple system to display such a variety of evolutionary states (WTTS, CTTS, IRC), which may be the consequence of the strong star-star interactions in this compact quadruple system.Comment: Accepted for publication in Astrophysical Journal, 29 pages, 2 tables, 5 figure

    NICMOS Images of the GG Tau Circumbinary Disk

    Full text link
    We present deep, near-infrared images of the circumbinary disk surrounding the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the Hubble Space Telescope. The spatially resolved proto-planetary disk scatters roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4, independent of wavelength, and colors that are comparable to the central source; all of these properties are significantly different from the earlier ground-based observations. New Monte Carlo scattering simulations of the disk emphasize that the general properties of the disk, such as disk flux, near side to far side flux ratio and integrated colors, can be approximately reproduced using ISM-like dust grains, without the presence of either circumstellar disks or large dust grains, as had previously been suggested. A single parameter phase function is fitted to the observed azimuthal variation in disk flux, providing a lower limit on the median grain size of 0.23 micron. Our analysis, in comparison to previous simulations, shows that the major limitation to the study of grain growth in T Tauri disk systems through scattered light lies in the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of astrometric measurements of the binary to solve the complete orbit, assuming that the binary is coplanar with the circumbinary ring. We find that the estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 < Rin/a < 6.7, is larger than that estimated by previous SPH simulations of binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap
    corecore