69,632 research outputs found

    Large entropy measures for endomorphisms of CP(k)

    Full text link
    Let ff be an holomorphic endomorphism of CPk\mathbb{C}\mathbb{P}^k. We construct by using coding techniques a class of ergodic measures as limits of non-uniform probability measures on preimages of points. We show that they have large metric entropy, close to logdk\log d^k. We establish for them strong stochastic properties and prove the positivity of their Lyapunov exponents. Since they have large entropy, those measures are supported in the support of the maximal entropy measure of ff. They in particular provide lower bounds for the Hausdorff dimension of the Julia set.Comment: 24 page

    Relative cohomology of bi-arrangements

    Full text link
    A bi-arrangement of hyperplanes in a complex affine space is the data of two sets of hyperplanes along with a coloring information on the strata. To such a bi-arrangement, one naturally associates a relative cohomology group, that we call its motive. The motivation for studying such relative cohomology groups comes from the notion of motivic period. More generally, we suggest the systematic study of the motive of a bi-arrangement of hypersurfaces in a complex manifold. We provide combinatorial and cohomological tools to compute the structure of these motives. Our main object is the Orlik-Solomon bi-complex of a bi-arrangement, which generalizes the Orlik-Solomon algebra of an arrangement. Loosely speaking, our main result states that "the motive of an exact bi-arrangement is computed by its Orlik-Solomon bi-complex", which generalizes classical facts involving the Orlik-Solomon algebra of an arrangement. We show how this formalism allows us to explicitly compute motives arising from the study of multiple zeta values and sketch a more general application to periods of mixed Tate motives.Comment: 43 pages; minor correction

    Gerbes, simplicial forms and invariants for families of foliated bundles

    Full text link
    The notion of a gerbe with connection is conveniently reformulated in terms of the simplicial deRham complex. In particular the usual Chern-Weil and Chern-Simons theory is well adapted to this framework and rather easily gives rise to `characteristic gerbes' associated to families of bundles and connections. In turn this gives invariants for families of foliated bundles. A special case is the Quillen line bundle associated to families of flat SU(2)-bundlesComment: 28 page

    Quasi-cluster algebras from non-orientable surfaces

    Full text link
    With any non necessarily orientable unpunctured marked surface (S,M) we associate a commutative algebra, called quasi-cluster algebra, equipped with a distinguished set of generators, called quasi-cluster variables, in bijection with the set of arcs and one-sided simple closed curves in (S,M). Quasi-cluster variables are naturally gathered into possibly overlapping sets of fixed cardinality, called quasi-clusters, corresponding to maximal non-intersecting families of arcs and one-sided simple closed curves in (S,M). If the surface S is orientable, then the quasi-cluster algebra is the cluster algebra associated with the marked surface (S,M) in the sense of Fomin, Shapiro and Thurston. We classify quasi-cluster algebras with finitely many quasi-cluster variables and prove that for these quasi-cluster algebras, quasi-cluster monomials form a linear basis. Finally, we attach to (S,M) a family of discrete integrable systems satisfied by quasi-cluster variables associated to arcs in the quasi-cluster algebra and we prove that solutions of these systems can be expressed in terms of cluster variables of type A.Comment: 38 pages, 14 figure
    corecore