6,767 research outputs found

    Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    Get PDF
    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separation properties of poorly selective rubbery polymers towards a mixture of carbon dioxide/methane. Some of the filled rubbery polymers achieve intrinsic separation properties comparable to cellulose acetate, polysulfone or polyethersulfone. However, zeolite 5A leads to a decrease in permeability and an unchanged selectivity. This is due to the impermeable character of these particles, i.e. carbon dioxide molecules cannot diffuse through the porous structure under the conditions applied. Using silicate-1 also results in an improvement of the oxygen/nitrogen separation properties which is mainly due to a kinetic effect. Carbon molecular sieves do not improve the separation performances or only to a very small extent. This is caused by a mainly dead-end (not interconnected) porous structure which is inherent to their manufacturing process

    Conformal Carroll groups

    Full text link
    Conformal extensions of Levy-Leblond's Carroll group, based on geometric properties analogous to those of Newton-Cartan space-time are proposed. The extensions are labelled by an integer kk. This framework includes and extends our recent study of the Bondi-Metzner-Sachs (BMS) and Newman-Unti (NU) groups. The relation to Conformal Galilei groups is clarified. Conformal Carroll symmetry is illustrated by "Carrollian photons". Motion both in the Newton-Cartan and Carroll spaces may be related to that of strings in the Bargmann space.Comment: 31 pages, no figures. Minor misprints corrected and clarifications added. To be published in J. Phys.

    Applications of system identification methods to the prediction of helicopter stability, control and handling characteristics

    Get PDF
    A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined

    Quantum integrability of quadratic Killing tensors

    Get PDF
    Quantum integrability of classical integrable systems given by quadratic Killing tensors on curved configuration spaces is investigated. It is proven that, using a "minimal" quantization scheme, quantum integrability is insured for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To appear in the J. Math. Phy

    Exotic galilean symmetry and the Hall effect

    Get PDF
    The ``Laughlin'' picture of the Fractional Quantum Hall effect can be derived using the ``exotic'' model based on the two-fold centrally-extended planar Galilei group. When coupled to a planar magnetic field of critical strength determined by the extension parameters, the system becomes singular, and ``Faddeev-Jackiw'' reduction yields the ``Chern-Simons'' mechanics of Dunne, Jackiw, and Trugenberger. The reduced system moves according to the Hall law.Comment: Talk given by P. A. Horvathy at the Joint APCTP- Nankai Symposium. Tianjin (China), Oct.2001. To appear in the Proceedings, to be published by Int. Journ. Mod. Phys. B. 7 pages, LaTex, IJMPB format. no figure

    Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles

    Full text link
    Low-frequency Raman scattering experiments have been performed on thin films consisting of nickel-silver composite nanoparticles embedded in alumina matrix. It is observed that the Raman scattering by the quadrupolar modes, strongly enhanced when the light excitation is resonant with the surface dipolar excitation, is mainly governed by the silver electron contribution to the plasmon excitation. The Raman results are in agreement with a core-shell structure of the nanoparticles, the silver shell being loosely bonded to the nickel core.Comment: 3 figures. To be published in Phys. Rev.

    Bright crater outflows: Possible emplacement mechanisms

    Get PDF
    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree

    The location, clustering, and propagation of massive star formation in giant molecular clouds

    Get PDF
    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ~6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. Yet, whether a cloud is associated with a SC does not depend on either the cloud's mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.Comment: 13 pages, 7 figures, in pres
    corecore