1,226 research outputs found

    Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory

    Full text link
    A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.Comment: 34 pages, 13 figures, accepted in Experimental Astronom

    Z-Spec: A MM-Wave Spectrometer For Measuring Redshifts Of Submillimeter Galaxies

    Get PDF
    We are building a background-limited, broadband millimeter-wave spectrometer (Z-Spec) for observations of CO rotational transitions from high-redshift dusty galaxies. The large instantaneous bandwidth (195 to 310 GHz) will enable redshifts of dust obscured galaxies to be unambiguously measured. Z-Spec uses a waveguide-coupled grating architecture in which the light propagation is confined within a parallel-plate waveguide. The grating is extremely compact compared to a classical free-space system. An array of silicon nitride bolometers cooled to 100 mK will provide background-limited performance. Z-Spec serves as a technology demonstration for a future space-borne far-infrared grating spectrometer

    Laryngeal teflonoma identified by Fourier-transform infrared microspectroscopy after forensic autopsy: An interesting tool for foreign material identification in forensic cases

    Get PDF
    International audienceForensic pathologists are sometimes confronted with microscopic foreign bodies mixed in with soft tissues surrounding wounds and which are thus difficult to identify. This identification, however, could be primordial in investigating a crime and in determining the weapon used. A case of a fatal respiratory distress syndrome due to conjoining suicidal drug intoxication and laryngeal obstruction by a voluminous foreign body giant cell granuloma is presented. The classical histological examination showed exogenous particles in the vocal cord tumor with birefringent qualities. Their analysis with Fourier-Transform infrared (FTIR) spectrometry coupled with infrared microscope allows the determination of their chemical nature as polytetrafluoroethylene and to the diagnosis of teflonoma. This case report put the emphasis on the forensic interest of the FTIR imaging

    CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    Get PDF
    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.Comment: 12 pages, 15 figures, updated version of a paper accepted for Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE, 7020, 200

    Sub-kelvin cooling for space and ground-based telescopes

    Get PDF
    The quest for knowledge and the initiative to solve the mysteries around us entail to develop instruments at the state of the art in many technological domains. This is particularly true in the field of astrophysics, where the signals from faint galaxies and other dim sources require to use high sensitivity leading experiments. In that respect cryogenics and the use of low temperature detectors are often essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. Therefore there is an increasing demand for coolers able to provide temperature below 1 K. Cooling for space implies specific requirements such as operation in microgravity, limited energy and mass budgets, reliability and long lifetime. These last two requirements also apply for systems dedicated to ground-based telescopes, usually set in remote and harsh environment such as the high altitude Atacama site in Chile or south pole, for which maintenance must be limited to a strict minimum. Various solutions have been successfully developed and flown, or are currently in operation in ground based telescopes. New developments are underway. Several cooling techniques and projects will be presented and discussed

    Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP

    Get PDF
    We present a method of cross-calibrating the polarization angle of a polarimeter using BICEP Galactic observations. \bicep\ was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers observing from the geographic South Pole at 100 and 150 GHz. The BICEP polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7 degrees in absolute polarization orientation. BICEP observed the temperature and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec. = -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to 0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at 100 and 150 GHz, respectively. We also discuss the expected improvement of the BICEP Galactic field observations with forthcoming BICEP2 and Keck observations.Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 201

    Mathematical models for somite formation

    Get PDF
    Somitogenesis is the process of division of the anterior–posterior vertebrate embryonic axis into similar morphological units known as somites. These segments generate the prepattern which guides formation of the vertebrae, ribs and other associated features of the body trunk. In this work, we review and discuss a series of mathematical models which account for different stages of somite formation. We begin by presenting current experimental information and mechanisms explaining somite formation, highlighting features which will be included in the models. For each model we outline the mathematical basis, show results of numerical simulations, discuss their successes and shortcomings and avenues for future exploration. We conclude with a brief discussion of the state of modeling in the field and current challenges which need to be overcome in order to further our understanding in this area

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions

    Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements

    Get PDF
    We present the design, integration, and first ryogenic testing of our new broad-band millimeter-wave spectrometer, Z-Spec. Z-Spec uses a novel architecture called WaFIRS (Waveguide Far-IR Spectrometer), which employs a curved diffraction grating in a parallel-plate waveguide propagation medium. The instrument will provide a resolving power betwee 200 and 350 across an instantaneous bandwidth of 190-310 GHz, all packaged within a cryostat that is of order 1 meter in size. For background-limited astronomical observations in the 1mm terrestrial window, Z-Spec uses 160 silicon nitride micro-mesh bolometers and the detectors and waveguide grating are cooled to ~0.1 K. Our first cryogenic measurements at 225 GHz show resolving power greater than 200, and the end-to-end throughput is estimated to be greater than 30%, possibly as high as 40%. Z-Spec represents the first systematic approach to cosmological redshift measurement that is not based on optical or near-IR identifications. With its good sensitivity and large bandwidth, Z-Spec provides a new capability for millimeter-wave astrophysics. The instrument will be capable of measureing rotational carbon monoxide line emission from bright dusty galaxies at redshifts of up to 4, and the broad bandwidth insures that at least two lines will be simultaneously detected, providing an unambiguous redshift determination. In addition to Z-Spec's observations over the next 1-3 years, the WaFIRS spectrometer architecture makes an excellent candidate for mid-IR to millimeter-wave spectrometers on future space-borned and suborbital platforms such as SPICA and SAFIR. The concept is dramatically more compact and lightweight than conventional free-space grating spectrometers, and no mirrors or lenses are used in the instrument. After the progress report on Z-Spec we highlight this capability
    corecore