4,698 research outputs found
Are our actions aligned with our evidence? The skinny on changing the landscape of obesity.
Recent debate about the role of food deserts in the United States (i.e., places that lack access to healthy foods) has prompted discussion on policies being enacted, including efforts that encourage the placement of full-service supermarkets into food deserts. Other initiatives to address obesogenic neighborhood features include land use zoning and parks renovations. Yet, there is little evidence to demonstrate that such policies effect change. While we suspect most researchers and policymakers would agree that effective neighborhood change could be a powerful tool in combating obesity, we desperately need strong and sound evidence to guide decisions about where and how to invest
Progression of myopathology in Kearns-Sayre syndrome
We report on the progression of myopathology by comparing two biopsies from a patient with a Kearns-Sayre-Syndrome. The first biopsy was taken in 1979 and showed 10% ragged-red fibers. Myopathic changes were slight including internal nuclei and fiber splitting in 10% of the fibers. Electron microscopy revealed typical mitochondrial abnormalities with regard to number and shape. In 1989 a second biopsy was performed for an extended analysis of mitochondrial DNA. This time less than 5% of all fibers were ragged-red. Severe myopathic changes could be detected which so far has rarely been reported in mitochondrial cytopathy
Whole-genome sequencing and the clinician: a tale of two cities
Clinicians are faced with unprecedented opportunities to identify the genetic aetiologies of hitherto molecularly uncharacterised conditions via the use of high-throughput sequencing. Access to genomic technology and resultant data is no longer limited to clinicians, geneticists and bioinformaticians, however; ongoing commercialisation gives patients themselves ever greater access to sequencing services. We report an increasingly common medical scenario by describing two neuromuscular patients-a mother and adult son-whose consumer access to whole-genome sequencing affected their diagnostic journey
Which circulating antioxidant vitamins are confounded by socioeconomic deprivation? The MIDSPAN family study
<p><b>Background:</b> Antioxidant vitamins are often described as having “independent” associations with risk of cancer, cardiovascular disease (CVD) and mortality. We aimed to compare to what extent a range of antioxidant vitamins and carotenoids are associated with adulthood and childhood markers of socioeconomic deprivation and to adverse lifestyle factors.</p>
<p><b>Methods and Findings:</b> Socioeconomic and lifestyle measures were available in 1040 men and 1298 women from the MIDSPAN Family Study (30–59 years at baseline) together with circulating levels of vitamins A, C, E, and carotenoids (α-carotene, β-carotene, lutein and lycopene). Markers of socioeconomic deprivation in adulthood were consistently as strongly associated with lower vitamin C and carotenoid levels as markers of adverse lifestyle; the inverse association with overcrowding was particularly consistent (vitamin C and carotenoids range from 19.1% [95% CI 30.3–6.0] to 38.8% [49.9–25.3] lower among those in overcrowded residencies). These associations were consistent after adjusting for month, classical CVD risk factors, body mass index, physical activity, vitamin supplements, dietary fat and fibre intake. Similar, but weaker, associations were seen for childhood markers of deprivation. The association of vitamin A or E were strikingly different; several adult adverse lifestyle factors associated with higher levels of vitamin A and E, including high alcohol intake for vitamin A (9.5% [5.7–13.5]) and waist hip ratio for vitamin E (9.5% [4.8–14.4]), with the latter associations partially explained by classical risk factors, particularly cholesterol levels.</p>
<p><b>Conclusions:</b> Plasma vitamin C and carotenoids have strong inverse associations with adulthood markers of social deprivation, whereas vitamin A and E appear positively related to specific adverse lifestyle factors. These findings should help researchers better contextualize blood antioxidant vitamin levels by illustrating the potential limitations associated with making causal inferences without consideration of social deprivation.</p>
Effects of gestational age at birth on cognitive performance : a function of cognitive workload demands
Objective: Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth.
Methods: Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test.
Results: Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%).
Conclusions: The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth
Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders
Background
Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families.
Methods
Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA).
Results
A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals.
Conclusions
This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog
Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems
Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes
Progressive muscular dystrophy in childhood
The words of Gowers are as true today as they were nearly a century ago. My interest in muscular dystrophy started in 1957 when, as Senior House Officer at Queen Mary's Hospital for Children, Carshalton, Surrey, I first observed a large number of children suffering from this tragic disease. The frustration of helplessly, watching its inevitable course stimulated the present study.After obtaining an initial impression or' the collection from my clinical observations and a review of the hospital records between 1920 and 1950, I started a more systematic enquiry. The present investigation compromises my personal observations on 65 cases ranging in age from 3 to 16 years. Of these, 57 were seen and followed up at Queen Mary's Hospital for Children, and 8 at the Southern Hospital, Dartford, Kent
- …
