63 research outputs found

    Reusable Ionogel-based Photo-actuators in a Lab-on-a-disc

    Get PDF
    This paper describes the design, fabrication and performance of a reusable ionogel-based photo-actuator, in-situ photopolymerised into a lab-on-a-disc microfluidic device, for flow control. The ionogel provides an effective barrier to liquids during storage of reagents and spinning of the disc. A simple LED (white light) triggers actuation of the ionogel for selective and precise channel opening at a desired location and time. The mechanism of actuation is reversible, and regeneration of the actuator is possible with an acid chloride solution. In order to achieve regeneration, the Lab-on-a-Disc device was designed with a microchannel connected perpendicularly to the bottom of the ionogel actuator (regeneration channel). This configuration allows the acid solution to reach the actuator, independently from the main channel, which initiates ionogel swelling and main channel closure, and thereby enables reusability of the whole device.Economía y Competitividad), Spain. This project has receivedfunding from the European Union Seventh Framework Programme(FP7) for Research, Technological Development and Demonstrationunder grant agreement no. 604241. JS and FBL acknowledge fund-ing support from Gobierno de Espa˜na, Ministerio de Economía yCompetitividad, with Grant No. BIO2016-80417-P and personallyacknowledge to Marian M. De Pancorbo for letting them to use herlaboratory facilities at UPV/EHU. A.T., L.F., and D.D. are grateful forfinancial support from the Marie Curie Innovative Training Net-work OrgBIO (Marie Curie ITN, GA607896) and Science FoundationIreland (SFI) under the Insight Centre for Data Analytics initiative,Grant Number SFI/12/RC/2289

    Signature of metastable electrons in highly charged ion surface interactions

    Get PDF
    We present autoionization spectra of metastable Ar(8+) and C(4+), N(5+), O(6+) and Ne(8+) scattering off an Al(111) surface with incident energies down to 5 eV. The unprecedented quality of the experimental data permits the observation of a unique, yet undiscovered peak in the structures originating from the metastable projectiles compared to corresponding ground state configurations. Analyzing the peak positions for different projectile species and velocities we demonstrate that the peak must be ascribed to an above-surface transition under participation of the metastable state.Comment: 12 pages, 3 figures, http://pikp28.uni-muenster.de/~ducre

    Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells

    Get PDF
    Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells

    Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle

    Get PDF
    A centrifugally driven pulse-free flow has been used for generation of tripolyphosphate (TPP)-gelated chitosan beads with tunable diameters ranging from 148 to 257 lm. The production process requires a single motor as the sole actively actuated component. The 2% (w/w) chitosan solution was extruded through a polymeric nozzle with an inner diameter of 127 lm in the centrifugal field ranging from 93 to 452g and the drops were collected in an Eppendorf tube containing 10% (w/w) TPP solution at pH 4.0. The reproducibility of the bead diameters out of different nozzles was very good with overall CVs of the bead diameters down to 15% and the production rate was 45 beads per second per nozzle at 44 Hz rotor frequency. The production rate was proportional to the sixth power of the rotor frequency, which was explained by the non-Newtonian behaviour of the chitosan solution with a flow behaviour index of 0.466. An analytical model for the bead diameter and production rate has been presented and validated by the experimental data. The shrinkage of chitosan drops during gelation was estimated from the observations and the theoretical model

    CD-based microfluidics for primary care in extreme point-of-care settings

    Get PDF
    We review the utility of centrifugal microfluidic technologies applied to point-of-care diagnosis in extremely under-resourced environments. The various challenges faced in these settings are showcased, using areas in India and Africa as examples. Measures for the ability of integrated devices to effectively address point-of-care challenges are highlighted, and centrifugal, often termed CD-based microfluidic technologies, technologies are presented as a promising platform to address these challenges. We describe the advantages of centrifugal liquid handling, as well as the ability of a standard CD player to perform a number of common laboratory tests, fulfilling the role of an integrated lab-on-a-CD. Innovative centrifugal approaches for point-of-care in extremely resource-poor settings are highlighted, including sensing and detection strategies, smart power sources and biomimetic inspiration for environmental control. The evolution of centrifugal microfluidics, along with examples of commercial and advanced prototype centrifugal microfluidic systems, is presented, illustrating the success of deployment at the point-of-care. A close fit of emerging centrifugal systems to address a critical panel of tests for under-resourced clinic settings, formulated by medical experts, is demonstrated. This emphasizes the potential of centrifugal microfluidic technologies to be applied effectively to extremely challenging point-of-care scenarios and in playing a role in improving primary care in resource-limited settings across the developing world

    A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression

    Get PDF
    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 µm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity

    Immunodiagnostics and immunosensor design

    Get PDF
    This work compiles information on the principles of diagnostic immunochemical methods and the recent advances in this field. It presents an overview of modern techniques for the production of diag- nostic antibodies, their modification with the aim of improving their diagnostic potency, the different types of immunochemical detection systems, and the increasing diagnostic applications for human health that include specific disease markers, individualized diagnosis of cancer subtypes, therapeutic and addictive drugs, food residues, and environmental contaminants. A special focus lies in novel developments of immu- nosensor techniques, promising approaches to miniaturized detection units and the associated microfluidic systems. The trends towards high-throughput systems, multiplexed analysis, and miniaturization of the diag- nostic tools are discussed. It is also made evident that progress in the last few years has largely relied on novel chemical approaches
    corecore