329 research outputs found
Candida albicans Is Resistant to Polyglutamine Aggregation and Toxicity
Acknowledgments We thank the Donnelly Sequencing Centre for sequencing, and Jonathan Krieger at the SikKids Proteomics, Analytics, Robotics & Chemical Biology Centre at The Hospital for Sick Children for mass spectrometry analysis. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust grant 096072), T.K. is supported by a Queen Elizabeth II Graduate Scholarship in Science and Technology (University of Toronto), M.L.D. is supported by a Canadian Institutes of Health Research (CIHR) Operating grant 325538, L.E.C. is supported by a Canada Research Chair in Microbial Genomics and Infectious Disease, by CIHR grants MOP-119520 and MOP-86452, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada (grants 06261 and 462167).Peer reviewedPublisher PD
Polyglutamine Expanded Huntingtin Dramatically Alters the Genome-Wide Binding of HSF1
In Huntington's disease (HD), polyglutamine expansions in the huntingtin (Htt) protein cause subtle changes in cellular functions that, over-time, lead to neurodegeneration and death. Studies have indicated that activation of the heat shock response can reduce many of the effects of mutant Htt in disease models, suggesting that the heat shock response is impaired in the disease. To understand the basis for this impairment, we have used genome-wide chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) to examine the effects of mutant Htt on the master regulator of the heat shock response, HSF1. We find that, under normal conditions, HSF1 function is highly similar in cells carrying either wild-type or mutant Htt. However, polyQ-expanded Htt severely blunts the HSF1-mediated stress response. Surprisingly, we find that the HSF1 targets most affected upon stress are not directly associated with proteostasis, but with cytoskeletal binding, focal adhesion and GTPase activity. Our data raise the intriguing hypothesis that the accumulated damage from life-long impairment in these stress responses may contribute significantly to the etiology of Huntington's disease.National Institutes of Health (U.S.) (Grant R24 DK-090963)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (Grant P30-ES002109)National Science Foundation (U.S.) (Award DB1-0821391
ALS Yeast Models-Past Success Stories and New Opportunities
In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure
Human Hsp70 Disaggregase reverses Parkinson’s-linked α-Synuclein Amyloid Fibrils
Intracellular amyloid fibrils linked to neurodegenerative disease typically accumulate in an age-related manner, suggesting inherent cellular capacity for counteracting amyloid formation in early life. Metazoan molecular chaperones assist native folding and block polymerization of amyloidogenic proteins, preempting amyloid fibril formation. Chaperone capacity for amyloid disassembly, however, is unclear. Here, we show that a specific combination of human Hsp70 disaggregase-associated chaperone components efficiently disassembles α-synuclein amyloid fibrils characteristic of Parkinson’s disease in vitro. Specifically, the Hsc70 chaperone, the class B J-protein DNAJB1, and an Hsp110 family nucleotide exchange factor (NEF) provide ATP-dependent activity that disassembles amyloids within minutes via combined fibril fragmentation and depolymerization. This ultimately generates non-toxic α-synuclein monomers. Concerted, rapid interaction cycles of all three chaperone components with fibrils generate the power stroke required for disassembly. This identifies a powerful human Hsp70 disaggregase activity that efficiently disassembles amyloid fibrils and points to crucial yet undefined biology underlying amyloid-based diseases
Examination of ataxin-3 (atx-3) aggregation by structural mass spectrometry techniques: A rationale for expedited aggregation upon polyglutamine (polyQ) expansion
Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73-96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided
Fully automated deep learning-based localization and segmentation of the locus coeruleus in aging and Parkinson's disease using neuromelanin-sensitive MRI
Purpose:
Development and performance measurement of a fully automated pipeline that localizes and segments the locus coeruleus in so-called neuromelanin-sensitive magnetic resonance imaging data for the derivation of quantitative biomarkers of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Methods:
We propose a pipeline composed of several 3D-Unet-based convolutional neural networks for iterative multi-scale localization and multi-rater segmentation and non-deep learning-based components for automated biomarker extraction. We trained on the healthy aging cohort and did not carry out any adaption or fine-tuning prior to the application to Parkinson’s disease subjects.
Results:
The localization and segmentation pipeline demonstrated sufficient performance as measured by Euclidean distance (on average around 1.3mm on healthy aging subjects and 2.2mm in Parkinson’s disease subjects) and Dice similarity coefficient (overall around 71% on healthy aging subjects and 60% for subjects with Parkinson’s disease) as well as promising agreement with respect to contrast ratios in terms of intraclass correlation coefficient of ≥0.80 for healthy aging subjects compared to a manual segmentation procedure. Lower values (≥0.48) for Parkinson’s disease subjects indicate the need for further investigation and tests before the application to clinical samples.
Conclusion:
These promising results suggest the usability of the proposed algorithm for data of healthy aging subjects and pave the way for further investigations using this approach on different clinical datasets to validate its practical usability more conclusively
Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases
Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species.
Huntington\u27s disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria
Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models
Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of alpha-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human alpha-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
- …
