16,447 research outputs found
Gravity-driven draining of a thin rivulet with constant width down a slowly varying substrate
The locally unidirectional gravity-driven draining of a thin rivulet with constant width but slowly varying contact angle down a slowly varying substrate is considered. Specifically, the flow of a rivulet in the azimuthal direction from the top to the bottom of a large horizontal cylinder is investigated. In particular, it is shown that, despite behaving the same locally, this flow has qualitatively different global behaviour from that of a rivulet with constant contact angle but slowly varying width. For example, whereas in the case of constant contact angle there is always a rivulet that runs all the way from the top to the bottom of the cylinder, in the case of constant width this is possible only for sufficiently narrow rivulets. Wider rivulets with constant width are possible only between the top of the cylinder and a critical azimuthal angle on the lower half of the cylinder. Assuming that the contact lines de-pin at this critical angle (where the contact angle is zero) the rivulet runs from the critical angle to the bottom of the cylinder with zero contact angle, monotonically decreasing width and monotonically increasing maximum thickness. The total mass of fluid on the cylinder is found to be a monotonically increasing function of the value of the constant width
Decentralized Constraint Satisfaction
We show that several important resource allocation problems in wireless
networks fit within the common framework of Constraint Satisfaction Problems
(CSPs). Inspired by the requirements of these applications, where variables are
located at distinct network devices that may not be able to communicate but may
interfere, we define natural criteria that a CSP solver must possess in order
to be practical. We term these algorithms decentralized CSP solvers. The best
known CSP solvers were designed for centralized problems and do not meet these
criteria. We introduce a stochastic decentralized CSP solver and prove that it
will find a solution in almost surely finite time, should one exist, also
showing it has many practically desirable properties. We benchmark the
algorithm's performance on a well-studied class of CSPs, random k-SAT,
illustrating that the time the algorithm takes to find a satisfying assignment
is competitive with stochastic centralized solvers on problems with order a
thousand variables despite its decentralized nature. We demonstrate the
solver's practical utility for the problems that motivated its introduction by
using it to find a non-interfering channel allocation for a network formed from
data from downtown Manhattan
A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow
We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations
Early out-of-equilibrium beam-plasma evolution
We solve analytically the out-of-equilibrium initial stage that follows the
injection of a radially finite electron beam into a plasma at rest and test it
against particle-in-cell simulations. For initial large beam edge gradients and
not too large beam radius, compared to the electron skin depth, the electron
beam is shown to evolve into a ring structure. For low enough transverse
temperatures, the filamentation instability eventually proceeds and saturates
when transverse isotropy is reached. The analysis accounts for the variety of
very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter
Detection of a relic X-ray jet in Cygnus A
We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long
linear feature seen in its counterlobe. This feature has a non-thermal spectrum
and lies on the line connecting the brighter hotspot on the approaching side
and the nucleus. We therefore conclude that this feature is (or was) a jet.
However, the outer part of this X-ray jet does not trace the current counterjet
observed in radio. No X-ray counterpart is observed on the jet side. Using
light-travel time effects we conclude that this X-ray 50 kpc linear feature is
a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to
inverse-Compton scatter cosmic microwave background photons, producing emission
in the X-rays.Comment: 4 pages. Proceedings of "High Energy Phenomena in Relativistic
Outflows", held in Dublin, Ireland, September 24-28, 200
Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery
Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques
Coupling CAD and CFD codes within a virtual integration platform
The Virtual Integration Platform (VIP) is an essential component of the VIRTUE project. It provides a system for combining disparate numerical analysis methods into a simulation environment. The platform allows for defining process chains, allocating of which tools to be used, and assigning users to perform the individual tasks. The platform also manages the data that are imported into or generated within a process, so that a version history of input and output can be evaluated. Within the VIP, a re-usable template for a given process chain can be created. A process chain is composed of one or more smaller tasks. For each of these tasks, a selection of available tools can be allocated. The advanced scripting methods in the VIP use wrappers for managing the individual tools. A wrapper allows communication between the platform and the tool, and passes input and output data as necessary, in most cases without modifying the tool in any way. In this way, third-party tools may also be used without the need for access to source code or special modifications. The included case study demonstrates several advantages of using the integration platform. A parametric propeller design process couples CAD and CFD codes to adapt the propeller to given operating constraints. The VIP template helped eliminate common user errors, and captured enough expert knowledge so that the casual user could perform the given tasks with minimal guidance. Areas of improvements to in-house codes and to the overall process were identified while using the integration platform. Additionally, the process chain was designed to facilitate formal optimisation methods
Mesenchymal stem cells to augment therapeutic angiogenesis in hind-limb ischemia models: how important is their source?
Murine models of hind-limb ischemia are frequently used to assess interventions aimed at improving therapeutic angiogenesis in critical limb ischemia. Much of the current focus of angiogenesis lies with mesenchymal stem cells (MSCs). Important considerations when using these models include the strain of mouse, because some strains recover from ischemia more rapidly than others, and the MSC source. MSCs derived from certain strains generate increased levels of growth factors such as vascular endothelial growth factor. This may significantly affect the limb?s ability to generate collateral vessels
- …
