1,703 research outputs found
Rotational Mixing in Magellanic Clouds B Stars - Theory versus Observation
We have used VLT FLAMES data to constrain the uncertain physics of rotational
mixing in stellar evolution models. We have simulated a population of single
stars and find two groups of observed stars that cannot be explained: (1) a
group of fast rotating stars which do not show evidence for rotational mixing
and (2) a group of slow rotators with strong N enrichment. Binary effects and
fossil magnetic fields may be considered to explain those two groups. We
suggest that the element boron could be used to distinguish between rotational
mixing and the binary scenario. Our single star population simulations quantify
the expected amount of boron in fast and slow rotators and allow a comparison
with measured nitrogen and boron abundances in B-stars.Comment: to appear in Comm. in Astroseismology - Contribution to the
Proceedings of the 38th LIAC, 200
Iron abundances from optical Fe III absorption lines in B-type stellar spectra
The role of optical Fe III absorption lines in B-type stars as iron abundance
diagnostics is considered. To date, ultraviolet Fe lines have been widely used
in B-type stars, although line blending can severely hinder their diagnostic
power. Using optical spectra, covering a wavelength range ~ 3560 - 9200 A, a
sample of Galactic B-type main-sequence and supergiant stars of spectral types
B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of
supergiants, and those predicted from the model atmosphere codes TLUSTY
(plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and
CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In
addition, a sample of main-sequence and supergiant objects, observed with
FEROS, reveal LTE abundance estimates consistent with the Galactic environment
and previous optical studies. Based on the present study, we list a number of
Fe III transitions which we recommend for estimating the iron abundance from
early B-type stellar spectra.Comment: 3 figures and 8 tables. Table 3 is to be published online only
(included here on last page). Accepted for publication in MNRA
Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress.
The transmembrane protein neuropilin-1 (NRP1) promotes vascular endothelial growth factor (VEGF) and extracellular matrix signaling in endothelial cells (ECs). Although it is established that NRP1 is essential for angiogenesis, little is known about its role in EC homeostasis. Here, we report that NRP1 promotes mitochondrial function in ECs by preventing iron accumulation and iron-induced oxidative stress through a VEGF-independent mechanism in non-angiogenic ECs. Furthermore, NRP1-deficient ECs have reduced growth and show the hallmarks of cellular senescence. We show that a subcellular pool of NRP1 localizes in mitochondria and interacts with the mitochondrial transporter ATP-binding cassette B8 (ABCB8). NRP1 loss reduces ABCB8 levels, resulting in iron accumulation, iron-induced mitochondrial superoxide production, and iron-dependent EC senescence. Treatment of NRP1-deficient ECs with the mitochondria-targeted antioxidant compound mitoTEMPO or with the iron chelator deferoxamine restores mitochondrial activity, inhibits superoxide production, and protects from cellular senescence. This finding identifies an unexpected role of NRP1 in EC homeostasis
Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments
The ability of a fuzzy logic classifier to dynamically identify non-meteorological radar echoes is demonstrated using data from the National Centre for Atmospheric Science dual polarisation, Doppler, X-band mobile radar. Dynamic filtering of radar echoes is required due to the variable presence of spurious targets, which can include insects, ground clutter and background noise. The fuzzy logic classifier described here uses novel multi-vertex membership functions which allow a range of distributions to be incorporated into the final decision. These membership functions are derived using empirical observations, from a subset of the available radar data. The classifier incorporates a threshold of certainty (25 % of the total possible membership score) into the final fractional defuzzification to improve the reliability of the results. It is shown that the addition of linear texture fields, specifically the texture of the cross-correlation coefficient, differential phase shift and differential reflectivity, to the classifier along with standard dual polarisation radar moments enhances the ability of the fuzzy classifier to identify multiple features. Examples from the Convective Precipitation Experiment (COPE) show the ability of the filter to identify insects (18 August 2013) and ground clutter in the presence of precipitation (17 August 2013). Medium-duration rainfall accumulations across the whole of the COPE campaign show the benefit of applying the filter prior to making quantitative precipitation estimates. A second deployment at a second field site (Burn Airfield, 6 October 2014) shows the applicability of the method to multiple locations, with small echo features, including power lines and cooling towers, being successfully identified by the classifier without modification of the membership functions from the previous deployment. The fuzzy logic filter described can also be run in near real time, with a delay of less than 1 min, allowing its use on future field campaigns
Chemical abundances and winds of massive stars in M31: a B-type supergiant and a WC star in OB10
We present high quality spectroscopic data for two massive stars in the OB10
association of M31, OB10-64 (B0Ia) and OB10-WR1 (WC6). Medium resolution
spectra of both stars were obtained using the ISIS spectrograph on the William
Hershel Telescope. This is supplemented with HST-STIS UV spectroscopy and KeckI
HIRES data for OB10-64. A non-LTE model atmosphere and abundance analysis for
OB10-64 is presented indicating that this star has similar photospheric CNO, Mg
and Si abundances as solar neighbourhood massive stars. A wind analysis of this
early B-type supergiant reveals a mass-loss rate of M_dot=1.6x10^-6
M_solar/yr,and v_infty=1650 km/s. The corresponding wind momentum is in good
agreement with the wind momentum -- luminosity relationship found for Galactic
early B supergiants. Observations of OB10W-R1 are analysed using a non-LTE,
line-blanketed code, to reveal approximate stellar parameters of log L/L_solar
\~ 5.7, T~75 kK, v_infty ~ 3000 km/s, M_dot ~ 10^-4.3 M_solar/yr, adopting a
clumped wind with a filling factor of 10%. Quantitative comparisons are made
with the Galactic WC6 star HD92809 (WR23) revealing that OB10-WR1 is 0.4 dex
more luminous, though it has a much lower C/He ratio (~0.1 versus 0.3 for
HD92809). Our study represents the first detailed, chemical model atmosphere
analysis for either a B-type supergiant or a WR star in Andromeda, and shows
the potential of how such studies can provide new information on the chemical
evolution of galaxies and the evolution of massive stars in the local Universe.Comment: 17 pages, 14 figures, MNRAS accepted version, some minor revision
B-type supergiants in the SMC: Rotational velocities and implications for evolutionary models
High-resolution spectra for 24 SMC and Galactic B-type supergiants have been
analysed to estimate the contributions of both macroturbulence and rotation to
the broadening of their metal lines. Two different methodologies are
considered, viz. goodness-of-fit comparisons between observed and theoretical
line profiles and identifying zeros in the Fourier transforms of the observed
profiles. The advantages and limitations of the two methods are briefly
discussed with the latter techniques being adopted for estimated projected
rotational velocities (\vsini) but the former being used to estimate
macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant
degree of rotational broadening (\vsini 90 \kms). For the remaining
targets, the distribution of projected rotational velocities are similar in
both our Galactic and SMC samples with larger values being found at earlier
spectral types. There is marginal evidence for the projected rotational
velocities in the SMC being higher than those in the Galactic targets but any
differences are only of the order of 5-10 \kms, whilst evolutionary models
predict differences in this effective temperature range of typically 20 to 70
\kms. The combined sample is consistent with a linear variation of projected
rotational velocity with effective temperature, which would imply rotational
velocities for supergiants of 70 \kms at an effective temperature of 28 000 K
(approximately B0 spectral type) decreasing to 32 \kms at 12 000 K (B8 spectral
type). For all targets, the macroturbulent broadening would appear to be
consistent with a Gaussian distribution (although other distributions cannot be
discounted) with an half-width varying from approximately 20 \kms
at B8 to 60 \kms at B0 spectral types.Comment: 4 figures, 8 pages, submitted to Astronomy and Astrophysic
A census of massive stars in NGC 346. Stellar parameters and rotational velocities
Spectroscopy for 247 stars towards the young cluster NGC 346 in the Small
Magellanic Cloud has been combined with that for 116 targets from the
VLT-FLAMES Survey of Massive Stars. Spectral classification yields a sample of
47 O-type and 287 B-type spectra, while radial-velocity variations and/or
spectral multiplicity have been used to identify 45 candidate single-lined
systems, 17 double-lined systems, and one triple-lined system. Atmospheric
parameters (T and log) and projected rotational velocities
(sin) have been estimated using TLUSTY model atmospheres; independent
estimates of sin were also obtained using a Fourier Transform method.
Luminosities have been inferred from stellar apparent magnitudes and used in
conjunction with the T and sin estimates to constrain stellar
masses and ages using the BONNSAI package. We find that targets towards the
inner region of NGC 346 have higher median masses and projected rotational
velocities, together with smaller median ages than the rest of the sample.
There appears to be a population of very young targets with ages of less than 2
Myr, which have presumably all formed within the cluster. The more massive
targets are found to have lower sin consistent with previous studies.
No significant evidence is found for differences with metallicity in the
stellar rotational velocities of early-type stars, although the targets in the
SMC may rotate faster than those in young Galactic clusters. The rotational
velocity distribution for single non-supergiant B-type stars is inferred and
implies that a significant number have low rotational velocity (10\%
with <40 km/s), together with a peak in the probability distribution at
300 km/s. Larger projected rotational velocity estimates have been
found for our Be-type sample and imply that most have rotational velocities
between 200-450 km/s.Comment: Accepted by A&
Atmospheric parameters and rotational velocities for a sample of Galactic B-type supergiants
High resolution optical spectra of 57 Galactic B-type supergiant stars have
been analyzed to determine their rotational and macroturbulent velocities. In
addition, their atmospheric parameters (effective temperature, surface gravity
and microturbulent velocity) and surface nitrogen abundances have been
estimated using a non-LTE grid of model atmospheres. Comparisons of the
projected rotational velocities have been made with the predictions of stellar
evolutionary models and in general good agreement was found. However for a
small number of targets, their observed rotational velocities were
significantly larger than predicted, although their nitrogen abundances were
consistent with the rest of the sample. We conclude that binarity may have
played a role in generating their large rotational velocities. No correlation
was found between nitrogen abundances and the current projected rotational
velocities. However a correlation was found with the inferred projected
rotational velocities of the main sequence precursors of our supergiant sample.
This correlation is again in agreement with the predictions of single star
evolutionary models that incorporate rotational mixing. The origin of the
macroturbulent and microturbulent velocity fields is discussed and our results
support previous theoretical studies that link the former to sub-photospheric
convection and the latter to non-radial gravity mode oscillations. In addition,
we have attempted to identify differential rotation in our most rapidly
rotating targets.Comment: Submitted to MNRAS, 16 page
Local pre-processing for node classification in networks : application in protein-protein interaction
Network modelling provides an increasingly popular conceptualisation in a wide range of domains, including the analysis of protein structure. Typical approaches to analysis model parameter values at nodes within the network. The spherical locality around a node provides a microenvironment that can be used to characterise an area of a network rather than a particular point within it. Microenvironments that centre on the nodes in a protein chain can be used to quantify parameters that are related to protein functionality. They also permit particular patterns of such parameters in node-centred microenvironments to be used to locate sites of particular interest. This paper evaluates an approach to index generation that seeks to rapidly construct microenvironment data. The results show that index generation performs best when the radius of microenvironments matches the granularity of the index. Results are presented to show that such microenvironments improve the utility of protein chain parameters in classifying the structural characteristics of nodes using both support vector machines and neural networks
Emission lines of Fe XI in the 257--407 A wavelength region observed in solar spectra from EIS/Hinode and SERTS
Theoretical emission-line ratios involving Fe XI transitions in the 257-407 A
wavelength range are derived using fully relativistic calculations of radiative
rates and electron impact excitation cross sections. These are subsequently
compared with both long wavelength channel Extreme-Ultraviolet Imaging
Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A), and
first-order observations (235-449 A) obtained by the Solar Extreme-ultraviolet
Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A
lines of Fe XI are detected in two EIS spectra, confirming earlier
identifications of these features, and 276.36 A is found to provide an electron
density diagnostic when ratioed against the 257.55 A transition. Agreement
between theory and observation is found to be generally good for the SERTS data
sets, with discrepancies normally being due to known line blends, while the
257.55 A feature is detected for the first time in SERTS spectra. The most
useful Fe XI electron density diagnostic is found to be the 308.54/352.67
intensity ratio, which varies by a factor of 8.4 between N_e = 10^8 and 10^11
cm^-3, while showing little temperature sensitivity. However, the 349.04/352.67
ratio potentially provides a superior diagnostic, as it involves lines which
are closer in wavelength, and varies by a factor of 14.7 between N_e = 10^8 and
10^11 cm^-3. Unfortunately, the 349.04 A line is relatively weak, and also
blended with the second-order Fe X 174.52 A feature, unless the first-order
instrument response is enhanced.Comment: 9 pages, 5 figures, 13 tables; MNRAS in pres
- …
