2,431 research outputs found
Conformal Ricci collineations of static spherically symmetric spacetimes
Conformal Ricci collineations of static spherically symmetric spacetimes are
studied. The general form of the vector fields generating conformal Ricci
collineations is found when the Ricci tensor is non-degenerate, in which case
the number of independent conformal Ricci collineations is \emph{fifteen}; the
maximum number for 4-dimensional manifolds. In the degenerate case it is found
that the static spherically symmetric spacetimes always have an infinite number
of conformal Ricci collineations. Some examples are provided which admit
non-trivial conformal Ricci collineations, and perfect fluid source of the
matter
On global models for isolated rotating axisymmetric charged bodies; uniqueness of the exterior field
A relatively recent study by Mars and Senovilla provided us with a uniqueness
result for the exterior vacuum gravitational field generated by an isolated
distribution of matter in axial rotation in equilibrium in General Relativity.
The generalisation to exterior electrovacuum gravitational fields, to include
charged rotating objects, is presented here.Comment: LaTeX, 21 pages, uses iopart styl
Sintering of calcium phosphates with a femtosecond pulsed laser for hard tissue engineering
The authors acknowledge support from the sponsors of this work; the EPSRC LUMIN (EP/K020234/1) and EU-Marie-Curie-IAPP LUSTRE (324538) projects.Direct laser sintering on hard tissues is likely to open new pathways for personalised medicine. To minimise irradiation damage of the surrounding soft tissues, lasers operating at wavelengths that are ‘safe’ for the tissues and biomaterials with improved optical properties are required. In this work laser sintering is demonstrated with the use of an ultrafast, femtosecond (100 fs) pulsed laser operating at a wavelength of 1045 nm and two existing calcium phosphate minerals (brushite and hydroxyapatite) which have been improved after doping with iron (10 mol%). Femtosecond laser irradiation caused transformation of the Fe3+-doped brushite and Fe3+-doped HAp samples into β-calcium pyrophosphate and calcium-iron-phosphate, respectively, with simultaneous evidence for microstructural sintering and densification. After estimating the temperature profile at the surface of the samples we suggest that soft tissues over 500 μm from the irradiated zone would be safe from thermal damage. This novel laser processing provides a means to control the phase constitution and the morphology of the finished surfaces. The porous structure of β-pyrophosphate might be suitable for applications in bone regeneration by supporting osteogenic cell activity while, the densified Fe3+-rich calcium-iron-phosphate may be promising for applications like dental enamel restoration.PostprintPeer reviewe
Ricci Collineations for type B warped space-times
We present the general structure of proper Ricci Collineations (RC) for type
B warped space-times. Within this framework, we give a detailed description of
the most general proper RC for spherically symmetric metrics. As examples,
static spherically symmetric and Friedmann-Robertson-Walker space-times are
considered.Comment: 18 pages, Latex, To appear in GR
Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
About Bianchi I with VSL
In this paper we study how to attack, through different techniques, a perfect
fluid Bianchi I model with variable G,c and Lambda, but taking into account the
effects of a -variable into the curvature tensor. We study the model under
the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a
particular symmetry, self-similarity (SS), matter collineations (MC) and
kinematical self-similarity (KSS). We compare both tactics since they are quite
similar (symmetry principles). We arrive to the conclusion that the LM is too
restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS
approaches bring us to obtain all the quantities depending on \int c(t)dt.
Therefore, in order to study their behavior we impose some physical
restrictions like for example the condition q<0 (accelerating universe). In
this way we find that is a growing time function and Lambda is a decreasing
time function whose sing depends on the equation of state, w, while the
exponents of the scale factor must satisfy the conditions
and
, i.e. for all equation of state relaxing in this way the
Kasner conditions. The behavior of depends on two parameters, the equation
of state and a parameter that controls the behavior of
therefore may be growing or decreasing.We also show that through
the Lie method, there is no difference between to study the field equations
under the assumption of a var affecting to the curvature tensor which the
other one where it is not considered such effects.Nevertheless, it is essential
to consider such effects in the cases studied under the SS, MC, and KSS
hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space
Scienc
β-pyrophosphate: A potential biomaterial for dental applications
Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel
Polymorphisms of CUL5 are Associated with CD4+ T Cell Loss in HIV-1 Infected Individuals
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4+ T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4+ T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4+ T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4+ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy
- …
