255 research outputs found

    The Lie-Poisson structure of the reduced n-body problem

    Full text link
    The classical n-body problem in d-dimensional space is invariant under the Galilean symmetry group. We reduce by this symmetry group using the method of polynomial invariants. As a result we obtain a reduced system with a Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The reduction preserves the natural form of the Hamiltonian as a sum of kinetic energy that depends on velocities only and a potential that depends on positions only. Hence we proceed to construct a Poisson integrator for the reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure

    X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis

    No full text
    AbstractExamination of histological or immunohistochemically stained 2D sections of embedded tissue is one of the most frequently used tools in biomedical research and clinical routine. Since to date, targeted sectioning of specific regions of interest (ROI) in the sample is not possible, we aimed at developing a guided sectioning approach based on x-ray 3D virtual histology for heavy ion stained murine lung samples. For this purpose, we increased the contrast to noise ratio of a standard benchtop microCT by 5–10-fold using free-propagation phase contrast imaging and thus substantially improved image quality. We then show that microCT 3D datasets deliver more precise anatomical information and quantification of the sample than traditional histological sections, which display deformations of the tissue. To quantify these deformations caused by sectioning we developed the “Displacement Index (DI)”, which combines block-matching with the calculation of the local mutual information. We show that the DI substantially decreases when a femtosecond laser microtome is used for sections as opposed to a traditional microtome. In conclusion, our microCT based virtual histology approach can be used as a supplement and a guidance tool for traditional histology, providing 3D measurement capabilities and offering the ability to perform sectioning directly at an ROI.</jats:p

    Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    No full text

    Vanishing Twist near Focus-Focus Points

    Full text link
    We show that near a focus-focus point in a Liouville integrable Hamiltonian system with two degrees of freedom lines of locally constant rotation number in the image of the energy-momentum map are spirals determined by the eigenvalue of the equilibrium. From this representation of the rotation number we derive that the twist condition for the isoenergetic KAM condition vanishes on a curve in the image of the energy-momentum map that is transversal to the line of constant energy. In contrast to this we also show that the frequency map is non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page

    Maslov Indices and Monodromy

    Get PDF
    We prove that for a Hamiltonian system on a cotangent bundle that is Liouville-integrable and has monodromy the vector of Maslov indices is an eigenvector of the monodromy matrix with eigenvalue 1. As a corollary the resulting restrictions on the monodromy matrix are derived.Comment: 6 page

    About ergodicity in the family of limacon billiards

    Get PDF
    By continuation from the hyperbolic limit of the cardioid billiard we show that there is an abundance of bifurcations in the family of limacon billiards. The statistics of these bifurcation shows that the size of the stable intervals decreases with approximately the same rate as their number increases with the period. In particular, we give numerical evidence that arbitrarily close to the cardioid there are elliptic islands due to orbits created in saddle node bifurcations. This shows explicitly that if in this one parameter family of maps ergodicity occurs for more than one parameter the set of these parameter values has a complicated structure.Comment: 17 pages, 9 figure

    Linear stability in billiards with potential

    Full text link
    A general formula for the linearized Poincar\'e map of a billiard with a potential is derived. The stability of periodic orbits is given by the trace of a product of matrices describing the piecewise free motion between reflections and the contributions from the reflections alone. For the case without potential this gives well known formulas. Four billiards with potentials for which the free motion is integrable are treated as examples: The linear gravitational potential, the constant magnetic field, the harmonic potential, and a billiard in a rotating frame of reference, imitating the restricted three body problem. The linear stability of periodic orbits with period one and two is analyzed with the help of stability diagrams, showing the essential parameter dependence of the residue of the periodic orbits for these examples.Comment: 22 pages, LaTex, 4 Figure

    Generic Twistless Bifurcations

    Get PDF
    We show that in the neighborhood of the tripling bifurcation of a periodic orbit of a Hamiltonian flow or of a fixed point of an area preserving map, there is generically a bifurcation that creates a ``twistless'' torus. At this bifurcation, the twist, which is the derivative of the rotation number with respect to the action, vanishes. The twistless torus moves outward after it is created, and eventually collides with the saddle-center bifurcation that creates the period three orbits. The existence of the twistless bifurcation is responsible for the breakdown of the nondegeneracy condition required in the proof of the KAM theorem for flows or the Moser twist theorem for maps. When the twistless torus has a rational rotation number, there are typically reconnection bifurcations of periodic orbits with that rotation number.Comment: 29 pages, 9 figure

    Chaos and stability in a two-parameter family of convex billiard tables

    Full text link
    We study, by numerical simulations and semi-rigorous arguments, a two-parameter family of convex, two-dimensional billiard tables, generalizing the one-parameter class of oval billiards of Benettin--Strelcyn [Phys. Rev. A 17, 773 (1978)]. We observe interesting dynamical phenomena when the billiard tables are continuously deformed from the integrable circular billiard to different versions of completely-chaotic stadia. In particular, we conjecture that a new class of ergodic billiard tables is obtained in certain regions of the two-dimensional parameter space, when the billiards are close to skewed stadia. We provide heuristic arguments supporting this conjecture, and give numerical confirmation using the powerful method of Lyapunov-weighted dynamics.Comment: 19 pages, 13 figures. Submitted for publication. Supplementary video available at http://sistemas.fciencias.unam.mx/~dsanders
    corecore