255 research outputs found
The Lie-Poisson structure of the reduced n-body problem
The classical n-body problem in d-dimensional space is invariant under the
Galilean symmetry group. We reduce by this symmetry group using the method of
polynomial invariants. As a result we obtain a reduced system with a
Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The
reduction preserves the natural form of the Hamiltonian as a sum of kinetic
energy that depends on velocities only and a potential that depends on
positions only. Hence we proceed to construct a Poisson integrator for the
reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure
X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis
AbstractExamination of histological or immunohistochemically stained 2D sections of embedded tissue is one of the most frequently used tools in biomedical research and clinical routine. Since to date, targeted sectioning of specific regions of interest (ROI) in the sample is not possible, we aimed at developing a guided sectioning approach based on x-ray 3D virtual histology for heavy ion stained murine lung samples. For this purpose, we increased the contrast to noise ratio of a standard benchtop microCT by 5–10-fold using free-propagation phase contrast imaging and thus substantially improved image quality. We then show that microCT 3D datasets deliver more precise anatomical information and quantification of the sample than traditional histological sections, which display deformations of the tissue. To quantify these deformations caused by sectioning we developed the “Displacement Index (DI)”, which combines block-matching with the calculation of the local mutual information. We show that the DI substantially decreases when a femtosecond laser microtome is used for sections as opposed to a traditional microtome. In conclusion, our microCT based virtual histology approach can be used as a supplement and a guidance tool for traditional histology, providing 3D measurement capabilities and offering the ability to perform sectioning directly at an ROI.</jats:p
Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources
Vanishing Twist near Focus-Focus Points
We show that near a focus-focus point in a Liouville integrable Hamiltonian
system with two degrees of freedom lines of locally constant rotation number in
the image of the energy-momentum map are spirals determined by the eigenvalue
of the equilibrium. From this representation of the rotation number we derive
that the twist condition for the isoenergetic KAM condition vanishes on a curve
in the image of the energy-momentum map that is transversal to the line of
constant energy. In contrast to this we also show that the frequency map is
non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page
Maslov Indices and Monodromy
We prove that for a Hamiltonian system on a cotangent bundle that is
Liouville-integrable and has monodromy the vector of Maslov indices is an
eigenvector of the monodromy matrix with eigenvalue 1. As a corollary the
resulting restrictions on the monodromy matrix are derived.Comment: 6 page
About ergodicity in the family of limacon billiards
By continuation from the hyperbolic limit of the cardioid billiard we show
that there is an abundance of bifurcations in the family of limacon billiards.
The statistics of these bifurcation shows that the size of the stable intervals
decreases with approximately the same rate as their number increases with the
period. In particular, we give numerical evidence that arbitrarily close to the
cardioid there are elliptic islands due to orbits created in saddle node
bifurcations. This shows explicitly that if in this one parameter family of
maps ergodicity occurs for more than one parameter the set of these parameter
values has a complicated structure.Comment: 17 pages, 9 figure
Linear stability in billiards with potential
A general formula for the linearized Poincar\'e map of a billiard with a
potential is derived. The stability of periodic orbits is given by the trace of
a product of matrices describing the piecewise free motion between reflections
and the contributions from the reflections alone. For the case without
potential this gives well known formulas. Four billiards with potentials for
which the free motion is integrable are treated as examples: The linear
gravitational potential, the constant magnetic field, the harmonic potential,
and a billiard in a rotating frame of reference, imitating the restricted three
body problem. The linear stability of periodic orbits with period one and two
is analyzed with the help of stability diagrams, showing the essential
parameter dependence of the residue of the periodic orbits for these examples.Comment: 22 pages, LaTex, 4 Figure
Generic Twistless Bifurcations
We show that in the neighborhood of the tripling bifurcation of a periodic
orbit of a Hamiltonian flow or of a fixed point of an area preserving map,
there is generically a bifurcation that creates a ``twistless'' torus. At this
bifurcation, the twist, which is the derivative of the rotation number with
respect to the action, vanishes. The twistless torus moves outward after it is
created, and eventually collides with the saddle-center bifurcation that
creates the period three orbits. The existence of the twistless bifurcation is
responsible for the breakdown of the nondegeneracy condition required in the
proof of the KAM theorem for flows or the Moser twist theorem for maps. When
the twistless torus has a rational rotation number, there are typically
reconnection bifurcations of periodic orbits with that rotation number.Comment: 29 pages, 9 figure
Chaos and stability in a two-parameter family of convex billiard tables
We study, by numerical simulations and semi-rigorous arguments, a
two-parameter family of convex, two-dimensional billiard tables, generalizing
the one-parameter class of oval billiards of Benettin--Strelcyn [Phys. Rev. A
17, 773 (1978)]. We observe interesting dynamical phenomena when the billiard
tables are continuously deformed from the integrable circular billiard to
different versions of completely-chaotic stadia. In particular, we conjecture
that a new class of ergodic billiard tables is obtained in certain regions of
the two-dimensional parameter space, when the billiards are close to skewed
stadia. We provide heuristic arguments supporting this conjecture, and give
numerical confirmation using the powerful method of Lyapunov-weighted dynamics.Comment: 19 pages, 13 figures. Submitted for publication. Supplementary video
available at http://sistemas.fciencias.unam.mx/~dsanders
- …
