1,143 research outputs found

    Authors’ response: is pupil diameter influenced by refractive error?

    Get PDF

    Emerging technologies for learning (volume 2)

    Get PDF

    Quasar-galaxy and AGN-galaxy cross-correlations

    Get PDF
    We compute quasar-galaxy and AGN-galaxy cross-correlation functions for samples taken from the \cite{VCV98} catalog of quasars and active galaxies, using tracer galaxies taken from the Edinburgh/Durham Southern Catalog. The sample of active galaxy targets shows positive correlation at projected separations rp<6h1Mpcr_p < 6 h^{-1} Mpc consistent with the usual power-law. On the other hand, we do not find a statistically significant positive quasar-galaxy correlation signal except in the range 3h1Mpc<rp<6h1Mpc3 h^{-1} Mpc < r_p < 6 h^{-1} Mpc where we find similar AGN-galaxy and quasar-galaxy correlation amplitudes. At separations rp<3h1Mpcr_p<3 h^{-1} Mpc a strong decline of quasar-galaxy correlations is observed, suggesting a significant local influence of quasars in galaxy formation. In an attempt to reproduce the observed cross-correlation between quasars and galaxies, we have performed CDM cosmological hydrodynamical simulations and tested the viability of a scenario based on the model developed by \cite{silkrees98}. In this scheme a fraction of the energy released by quasars is considered to be transferred into the baryonic component of the intergalactic medium in the form of winds. The results of the simulations suggest that the shape of the observed quasar-galaxy cross-correlation function could be understood in a scenario where a substantial amount of energy is transferred to the medium at the redshift of maximum quasar activity.Comment: 11 pages, 9 figures. Accepted for publication in Ap

    A Quantitative Evaluation of the Galaxy Component of COSMOS and APM Catalogs

    Get PDF
    We have carried out an independent quantitative evaluation of the galaxy component of the "COSMOS/UKST Southern Sky Object Catalogue" (SSC) and the "APM/UKST J Catalogue" (APM). Using CCD observations our results corroborate the accuracy of the photometry of both catalogs, which have an overall dispersion of about 0.2 mag in the range 17 <= b_J <= 21.5. The SSC presents externally calibrated galaxy magnitudes that follow a linear relation, while the APM instrumental magnitudes of galaxies, only internally calibrated by the use of stellar profiles, require second-order corrections. The completeness of both catalogs in a general field falls rapidly fainter than b_J = 20.0, being slightly better for APM. The 90% completeness level of the SSC is reached between b_J = 19.5 and 20.0, while for APM this happens between b_J = 20.5 and 21.0. Both SSC and APM are found to be less complete in a galaxy cluster field. Galaxies misclassified as stars in the SSC receive an incorrect magnitude because the stellar ones take saturation into account besides using a different calibration curve. In both cases, the misclassified galaxies show a large diversity of colors that range from typical colors of early-types to those of blue star-forming galaxies. A possible explanation for this effect is that it results from the combination of low sampling resolutions with properties of the image classifier for objects with characteristic sizes close to the instrumental resolution. We find that the overall contamination by stars misclassified as galaxies is < 5% to b_J = 20.5, as originally estimated for both catalogs. Although our results come from small areas of the sky, they are extracted from two different plates and are based on the comparison with two independent datasets.Comment: 14 pages of text and tables, 8 figures; to be published in the Astronomical Journal; for a single postscript version file see ftp://danw.on.br/outgoing/caretta/caretta.p

    Decision Tree Classifiers for Star/Galaxy Separation

    Full text link
    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14r2114\le r\le21 (85.285.2%) and r19r\ge19 (82.182.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT and Ball et al. (2006). We find that our FT classifier is comparable or better in completeness over the full magnitude range 15r2115\le r\le21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r>19r>19), our classifier is the only one able to maintain high completeness (>>80%) while still achieving low contamination (2.5\sim2.5%). Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,32669,545,326 SDSS photometric objects in the magnitude range 14r2114\le r\le21.Comment: Submitted to A

    The Northern Sky Optical Cluster Survey II: An Objective Cluster Catalog for 5800 Square Degrees

    Get PDF
    We present a new, objectively defined catalog of candidate galaxy clusters based on the galaxy catalogs from the Digitized Second Palomar Observatory Sky Survey (DPOSS). This cluster catalog, derived from the best calibrated plates in the high latitude (|b|>30) Northern Galactic Cap region, covers 5,800 square degrees, and contains 8,155 candidate clusters. A simple adaptive kernel density mapping technique, combined with the SExtractor object detection algorithm, is used to detect galaxy overdensities, which we identify as clusters. Simulations of the background galaxy distribution and clusters of varying richnesses and redshifts allow us to optimize detection parameters, and measure the completeness and contamination rates for our catalog. Cluster richnesses and photometric redshifts are measured, using integrated colors and magnitudes for each cluster. An extensive spectroscopic survey is used to confirm the photometric results. This catalog, with well-characterized sample properties, provides a sound basis for future studies of cluster physics and large scale structure.Comment: 49 pages, 16 figures. Accepted to AJ; appearing in April. Version with full resolution figures, and full length tables available at http://dposs.caltech.edu:8080/NoSOCS.htm

    Observational Mass-to-Light Ratio of Galaxy Systems: from Poor Groups to Rich Clusters

    Get PDF
    We study the mass-to-light ratio of galaxy systems from poor groups to rich clusters, and present for the first time a large database for useful comparisons with theoretical predictions. We extend a previous work, where B_j band luminosities and optical virial masses were analyzed for a sample of 89 clusters. Here we also consider a sample of 52 more clusters, 36 poor clusters, 7 rich groups, and two catalogs, of about 500 groups each, recently identified in the Nearby Optical Galaxy sample by using two different algorithms. We obtain the blue luminosity and virial mass for all systems considered. We devote a large effort to establishing the homogeneity of the resulting values, as well as to considering comparable physical regions, i.e. those included within the virial radius. By analyzing a fiducial, combined sample of 294 systems we find that the mass increases faster than the luminosity: the linear fit gives M\propto L_B^{1.34 \pm 0.03}, with a tendency for a steeper increase in the low--mass range. In agreement with the previous work, our present results are superior owing to the much higher statistical significance and the wider dynamical range covered (about 10^{12}-10^{15} M_solar). We present a comparison between our results and the theoretical predictions on the relation between M/L_B and halo mass, obtained by combining cosmological numerical simulations and semianalytic modeling of galaxy formation.Comment: 25 pages, 12 eps figures, accepted for publication in Ap

    Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature

    Get PDF
    Joint arthroplasty registries show an increased rate of aseptic loosening in uncemented acetabular components as compared to cemented acetabular components. Since loosening is associated with particulate wear debris, we postulated that uncemented acetabular components demonstrate a higher polyethylene wear rate than cemented acetabular components in total hip arthroplasty. We performed a systematic review of the peer-reviewed literature, comparing the wear rate in uncemented and cemented acetabular components in total hip arthroplasty. Studies were identified using MEDLINE (PubMed), EMBASE and the Cochrane Central Register of Controlled Trials. Study quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The search resulted in 425 papers. After excluding duplicates and selection based on title and abstracts, nine studies were found eligible for further analysis: two randomised controlled trials, and seven observational studies. One randomised controlled trial found a higher polyethylene wear rate in uncemented acetabular components, while the other found no differences. Three out of seven observational studies showed a higher polyethylene wear in uncemented acetabular component fixation; the other four studies did not show any differences in wear rates. The available evidence suggests that a higher annual wear rate may be encountered in uncemented acetabular components as compared to cemented components
    corecore